摘要
Objective To investigate the possibility to fabricate a blood vessel scaffold with a combined polymer for tissue engineering. Methods A blood vessel scaffold was designed with a combined polymer composed of rabbit vascular smooth muscle cells ( VSMCs), collagen and a non-spinning fabric mesh of polyglycolic acid(PGA). VSMQ were implanted into collagen gel and their growth was observed. The mixed solution of VSMQ and collagen was dropped into the tubular scaffold, followed by 7-day culturing. Results VSMQ formed many prominences after culturing in gelatinous collagen for 3 - 4 hours. With cells extending, some cells became shuttle-or spindle-shaped. After VSMQ-collagen complex was implanted into the PGA mesh, most of VSMCs remained in the pore of PGA mesh with the formation of gelation. VSMCs could adhere to and grow on the PGA fiber. Conclusion The non-spinning PGA porous biodegradable material coated with collagen is a good carrier for VSMCs to adhere and grow. 5 refs,3 figs.
Objective To investigate the possibility to fabricate a blood vessel scaffold with a combined polymer for tissue engineering. Methods A blood vessel scaffold was designed with a combined polymer composed of rabbit vascular smooth muscle cells ( VSMCs), collagen and a non-spinning fabric mesh of polyglycolic acid(PGA). VSMQ were implanted into collagen gel and their growth was observed. The mixed solution of VSMQ and collagen was dropped into the tubular scaffold, followed by 7-day culturing. Results VSMQ formed many prominences after culturing in gelatinous collagen for 3 - 4 hours. With cells extending, some cells became shuttle-or spindle-shaped. After VSMQ-collagen complex was implanted into the PGA mesh, most of VSMCs remained in the pore of PGA mesh with the formation of gelation. VSMCs could adhere to and grow on the PGA fiber. Conclusion The non-spinning PGA porous biodegradable material coated with collagen is a good carrier for VSMCs to adhere and grow. 5 refs,3 figs.
出处
《外科研究与新技术》
2003年第2期128-128,共1页
Surgical Research and New Technique