摘要
AIM:To investigate the cytotoxic mechanism of caribbean maitotoxin(MTX-C) in mammalian cells.METHODS:We used whole-cell patch-clamp techniques and fluorescence calcium imaging to determine the cellular toxic mechanisms of MTX-C in insulin secreting HIT-T15 cells,which is a system where the effects of MTX have been observed.HIT-T15 cells stably express L-type calcium current,making it a suitable model for this study.Using the fluorescence calcium indicator Indo-1 AM,we found that there is a profound increase in HIT-T15 intracellular free calcium 3 min after application of 200 nmol/L MTX-C.RESULTS:About 3 min after perfusion of MTX-C,a gradual increase in free calcium concentration was observed.This elevation was sustained throughout the entire recording period.Application of MTX-C did not elicit the L-type calcium current,but large cationiccurrents appeared after applying MTX-C to the extracellular solution.The current-voltage relationship of the cation current is approximately linear within the voltage range from-60 to 50 mV,but flattened at voltages at-80 and-100 mV.These results indicate that MTX-C induces a non-voltage activated,inward current under normal physiological conditions,which by itself or through a secondary mechanism results in a large amount of cationic influx.The biophysical mechanism of MTX-C is different to its isoform,pacific maitotoxin(MTX-P),when the extracellular calcium is removed.CONCLUSION:We conclude that MTX-C causes the opening of non-selective,non-voltage-activated ion channels,which elevates level of intracellular calcium concentration and leads to cellular toxicities.
AIM:To investigate the cytotoxic mechanism of caribbean maitotoxin(MTX-C) in mammalian cells.METHODS:We used whole-cell patch-clamp techniques and fluorescence calcium imaging to determine the cellular toxic mechanisms of MTX-C in insulin secreting HIT-T15 cells,which is a system where the effects of MTX have been observed.HIT-T15 cells stably express L-type calcium current,making it a suitable model for this study.Using the fluorescence calcium indicator Indo-1 AM,we found that there is a profound increase in HIT-T15 intracellular free calcium 3 min after application of 200 nmol/L MTX-C.RESULTS:About 3 min after perfusion of MTX-C,a gradual increase in free calcium concentration was observed.This elevation was sustained throughout the entire recording period.Application of MTX-C did not elicit the L-type calcium current,but large cationiccurrents appeared after applying MTX-C to the extracellular solution.The current-voltage relationship of the cation current is approximately linear within the voltage range from-60 to 50 mV,but flattened at voltages at-80 and-100 mV.These results indicate that MTX-C induces a non-voltage activated,inward current under normal physiological conditions,which by itself or through a secondary mechanism results in a large amount of cationic influx.The biophysical mechanism of MTX-C is different to its isoform,pacific maitotoxin(MTX-P),when the extracellular calcium is removed.CONCLUSION:We conclude that MTX-C causes the opening of non-selective,non-voltage-activated ion channels,which elevates level of intracellular calcium concentration and leads to cellular toxicities.