期刊文献+

广义α-stable过程的确切Hausdorff测度函数 被引量:1

The Exact Hausdorff Function of Generalized α-stable Process
下载PDF
导出
摘要 该文证明了广义α-stable过程的图集和像集的确切Hausdorff测度函数.该结果推广了N 指标d维α-stable过程和N指标d维广义Brownian sheet的相应结果. A process, generalized α-stable process, is introduced. It contains N-parameter d-dimensional generalized Brownian sheet and N-parameter d-dimensional α-stable process. The exact Hausdorff measure functions of this process are shown.
作者 郑水草
出处 《数学物理学报(A辑)》 CSCD 北大核心 2004年第4期404-408,共5页 Acta Mathematica Scientia
基金 国家自然科学基金(10071058-2)资助
关键词 确切Hausdorff测度函数 指数为α的稳定过程 广义布朗单 Exact Hausdorff measure functions α-stable process Generalized Brownian sheet.
  • 相关文献

参考文献8

二级参考文献16

  • 1Ciesielski Z, Taylor S J. First Passage Times and Sojourn Times for Brownian Motion in Space and the Exact Hausdorff Measure of the Sample Path[J]. Trans Amer Math Soc, 1962, 103: 434-450.
  • 2Ray D. Sojourn Times and the Exact Hausdorff Measure of the Sample Path for Planar Brownian Motion[J]. Trans Amer Math Soc, 1963, 108: 436-444.
  • 3Ehm W. Sample Function Properties of Multi-parameter Stable Processes[J].Z W, 1981, 56: 195-228.
  • 4He Sheng-wu, Wang Jia-gang, Yan Jia-an. Semi-martingale and Stochastic Analysis[M].Beijing:Science Publisher,1995(Ch).
  • 5Taylor S J. Sample Path Properties of a Transient Stable Process[J]. J Math Mech, 1967, 16: 1229-1246.
  • 6Pruitt W E, Taylor S J. Sample Path Properties of Processes with Stable Components Z[J]. Z W, 1969, 12: 267-289.
  • 7林火南,数学年刊A,1992年,13卷,3期,344页
  • 8庄兴无,应用概率统计,1987年,3期,270页
  • 9张润楚,中国科学.A,1985年,5期,389页
  • 10林火南,福建师范大学学报,1989年,5卷,3期,21页

共引文献2

同被引文献8

  • 1陈世荣.一类集合的 MINKOWSKI 容度[J].数学杂志,1993,13(1):1-14. 被引量:10
  • 2Berry M V.Some geometric aspects of wave motion,wavefront dislocations,diffraction catastrophes,diffractals,in geometry of the Laplace operator.Proc Pure Math,1980,36:13-38.
  • 3Lapidus M L,Pomerance C.The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums.Proc London Math Soc,1993,66:41-69.
  • 4Falconer K J.Techniques in Fractal Geometry.New York:John Wiley & Sons,Ltd,Chichester,1997.
  • 5Falconer K J.On the Minkowski measurability of fractals.Proc Amer Math Soc,1995,123(4):1115-1124.
  • 6Falconer K J.Fractal Geometry-Mathematical Foundations and Applications.New York:John Wiley & Sons,1990.
  • 7丰德军,饶辉,吴军.一维齐次Cantron集的Hausdorff维数[J].数学年刊(A辑),1997,1(3):331-336. 被引量:3
  • 8瞿成勤,饶辉,苏维宜.齐次Cantor集的Hausdorff测度[J].数学学报(中文版),2003,46(1):19-22. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部