期刊文献+

判定P_n(Γ)的Hilbert基的一个充要条件

A Necessary and Sufficient Condition for Determining a Hilbert Basis of P_n(Γ)
下载PDF
导出
摘要 设Γ是一作用在RR上的紧李群,Pn(Γ)是Г不变的多项式芽构成的环.Hilhert-Weyl定理证明了对于Pn(Γ)总存在一组由Г不变的齐次多项式芽组成的Hilbert基.然而,如何从Г不变的齐次多项式芽中选出一组Hilbert基?如何判定Г不变的齐次多项式芽的一个有限集就是Pn(Γ)的一组Hilbert基?该文借助于Noether环和不变积分的某些基本性质以及奇点理论的有关定理,证明了判定Pn(Γ)的Hilbett基的一个充要条件.这对某些Pn(Γ)提供了计算一组Hilbert基的新途径. Let Г be a compact Lie group acting on Rn and Pn(Г) the ring of Г invariant polynomial germs under Г. Hilbert-Weyl theorem shows that there is a Hilbert basis consisting of Г invariant homogeneous polynomial germs for Pn(Г) . However, it is not clear,how to choose a Hilbert basis from Г invariant homogeneous polynomial germs and how to determine that a finite set of Г invariant homogeneous polynomial germs is a Hilbert basis of Pn(Г) . In this paper, by means of some fundamental properties of Noether's ring and invariant integration as well as the relevant theorems in the theory of singularities, a necessary and sufficient condition is proved for determining a Hilbert basis of Pn(Г) . This will provide a new way to determine of a Hilbert basis for some Pn(Г) .
出处 《数学物理学报(A辑)》 CSCD 北大核心 2004年第4期469-474,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(10261002)贵州省科学技术基金资助
关键词 紧李群 不变多项式芽环 Hilbert基 Compact Lie group Ring of invariant polynomial germs Hilbert basis.
  • 相关文献

参考文献3

  • 1Golubitsky M, Stewart I N, Schaeffer D G. Singularities and groups in bifurcation theory. Appl Math Sci, 1991, 11(69)
  • 2Brocker T H. Differentiable Germs And Catastrophes. London Mathematical Society Lecture Note Series 17, London, New York, Melbourne: Cambridge University Press, 1975
  • 3B.L.范德瓦尔登著 曹锡华 曾肯成 郝炳新译.代数学Ⅱ[M].北京: 科学出版社,1978..

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部