期刊文献+

ZnO纳米/微米结构传感器对乙醇气敏性研究 被引量:3

Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol
下载PDF
导出
摘要 采用化学气相法分别在石英舟内表面和单晶硅衬底上制备了ZnO微米片、纳米线、微米四足体以及微米球4种结构,并制作了相应的气敏传感器。扫描电子显微镜、气敏测试仪等结果显示:合成的ZnO纳米/微米结构尺寸在200 nm^100μm之间,传感器最佳工作电流区间为120~130 mA,其中微米四足体制备的传感器灵敏度高达127,展现出优异的气敏特性。在4种结构中,微米四足体材料内部的VO缺陷含量最高,结合气敏测试与荧光光谱结果,我们认为材料内部的VO缺陷含量是影响材料气敏特性的最重要因素。 The micro plates, nano wires, micro tetrapods and micro spheres of ZnO were fabricated on the internal surface of quartz boat and the surface of single crystal silicon by chemical vapor deposition method, and the corresponding gas sensors were made. The following testing results from scanning electron microscope, the gas sensor testing instrument were obtained. The as grown ZnO with nano/micro structures have a different size from 200 nm to 100 μm. The optimized working currents range of these sensors are 120~130 mA. The gas sensor fabricated by micro tetrapods of ZnO exhibits the best sensitivity property and the corresponding sensitivity is up to 127. The highest content of VO defect exists in micro tetrapods of ZnO. Combining the gas sensor testing with PL spectra results, we attribute the most important factor affecting the gas sensor property to the content of VO defect in these materials.
出处 《发光学报》 EI CAS CSCD 北大核心 2014年第4期460-464,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金(60976036 51371120 51302174) 深圳市科技计划项目资助
关键词 ZNO 化学气相法 气敏特性 缺陷含量 Chemical sensors Chemical vapor deposition Gas detectors Instrument testing Materials testing Quartz Scanning electron microscopy Silicon wafers Vapors
  • 相关文献

参考文献17

  • 1Kong Y C,Yu D P,Feng S Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Applied Physics Letters,2001,(04):407-409.
  • 2Xu W Z,Ye Z Z,Ma D W. Quasi-aligned ZnO nanotubes grown on Si substrates[J].Applied Physics Letters,2005,(09):093110-0931-3.
  • 3Heath J R,Kuekes P J,Snider G S. A defect-tolerant computer architecture:Opportunities for nanotechnology[J].SCIENCE,1998,(5370):1716-1721.
  • 4Kong X Y,Ding Y,Yang R S. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].SCIENCE,2004.1348-1351.
  • 5Lao J Y,Huang J Y,Ren Z F. ZnO nanobridges and nanonails[J].Nano Letters,2003,(02):235-238.
  • 6Kong X Y,Wang Z L. Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].Nano Letters,2003,(12):1625-1631.
  • 7Yang P D,Yan H,Mao S. Controlled growth of ZnO nanowires and their optical properties[J].Advanced Functional Materials,2002,(05):323-331.
  • 8Dai Z R,Pan Z W,Wang Z L. Gallium oxide nanoribbons and nanosheets[J].Journal of Physical Chemistry B,2002,(05):902-904.
  • 9张军,孙聆东,廖春生,严纯华.氧化锌微晶的制备和形貌控制[J].无机化学学报,2002,18(1):72-74. 被引量:29
  • 10Li C C,Du Z F,Li L M. Surface-depletion controlled gas sensing ofZnO nanorods grown at room temperature[J].Applied Physics Letters,2007,(03):032101-0321-3.

二级参考文献16

  • 1Yang H., Coombs D., Ozin G.A. Nature, 1997, 386, 392.
  • 2Pinna N., Weiss K., Urban Joachim., Pileni M.P. Adv.Mater., 2001, 13,261.
  • 3Yang J., Cheng G. H., Zeng J. H., Yu S. H., Liu X. M.,Qian Y.T. Chem. Mater., 2001, 13,48.
  • 4Peng X., Manna L., Yang W. D., Wickham J., Scher E.,Kadavanich A., Alivisatos A.P. Nature, 2000, 404, 59.
  • 5Peng Z. A., Peng X.G. J. Am. Chem. Soc., 2001, 123,1389.
  • 6Jun Y.M., Lee S.M., Kang N.J., Cheon J.W. J. Am.Chem. Soc., 2001, 123, 5150.
  • 7Pan Z. W., Dai Z. R., Wang Z.L. Science, 2001, 291,1947.
  • 8Kong Y.C., Yu D.P., Zhang B., Fang W., Feng S.Q.Appl. Phys. Lett., 2001, 78, 407.
  • 9Li Y., Meng G. W., Zhang L. D., Phillipp F. Appl. Phys. Lett., 2000, 76,2011.
  • 10Huang M. H., Mao S., Feick H., Yan H. Q., Wu Y. Y.,Kind H., Weber E., Russo R., Yang P.D. Science, 2001,292, 1897.

共引文献28

同被引文献17

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部