期刊文献+

GaN基LED低温空穴注入层的MOCVD生长研究 被引量:1

Investigation of Low Temperature Hole-injection Layer in GaN-based LED Epitaxial Wafer Grown by MOCVD
下载PDF
导出
摘要 针对GaN基LED空穴注入效率低的问题,在量子阱与电子阻挡层之间插入低温空穴注入层(LTHIL),实验研究了MOCVD生长LT-HIL时二茂镁(Cp2Mg)流量和生长温度的影响。结果表明:随着Cp2Mg流量的增加,外延薄膜晶体质量下降,外延片表面平整度和均匀性降低;而受Mg掺杂时补偿效应的影响,主波长先红移后蓝移,芯片的输出光功率先升高后降低,正向电压先降低后升高。相比于无LT-HIL的样品,在20mA工作电流下,Cp2Mg流量为1.94μmol/min时制备的芯片的输出光功率提升20.3%,而正向电压降低0.1V。在Cp2Mg流量较大时,LT-HIL的渐变式生长温度对外延质量有所改善,但不是主要影响因素。 A low-temperature hole-injection layer (LT-HIL) was inserted between multiple-quantum well and electron-blocking layer in GaN-based light-emitting diodes (LEDs) to improve the hole-injection efficiency. The effects of magnesocene (Cp2Mg) flow rate and process temperature of LT-HIL in MOCVD epitaxy were investigated. The surface reflectivity and dominant wavelength of epitaxial wafers were measured by photoluminescence spectrometer, the surface profiles were observed by microscope, and the light-output power and forward voltage of fabricated chips were tested by wafer-level auto-measurement system. As the Cp2Mg flow rate increases, the crystal quality, flatness, and uniformity of epilayer decrease. Due to the compensation effects in Mg-doped GaN material, the dominant wavelength shows red-shift at first and then blue-shift, the output power of the chip goes up to the maximum then falls down, and the forward voltage goes down to the minimum then rises up. Compared to conventional LED chips without LT-HIL, the output power and forward voltage of the LED chips with Cp2Mg moral flow rate of 1.94 μmol/min are enhanced by 20.3% and reduced by 0.1 V under the injection current of 20 mA. It is also shown that the gradually changing process temperature can also improve the crystal quality, flatness and uniformity of epilayer, although it is non-principal reason under the condition of large Cp2Mg moral flow rate.
出处 《发光学报》 EI CAS CSCD 北大核心 2014年第5期595-599,共5页 Chinese Journal of Luminescence
基金 国家高技术研究发展计划(863)(2014AA032609) 广东省战略性新兴产业发展专项资金(2010A081002009 2011A081301004 2012A080302003) 中央高校基本科研业务费专项资金(2013ZM093 2013ZP0017)资助项目
关键词 LED MOCVD 低温空穴注入层 二茂镁 温度 Epilayers Flow rate Gallium nitride Metallorganic chemical vapor deposition Superconducting films Temperature
  • 相关文献

参考文献10

  • 1Wang C K,Chiou Y Z,Sun D J. Low dislocation densities of nitride-based light-emitting diodes with a preflow of NH3 source before growth of AlN buffer layer[J].Japanese Journal of Applied Physics,2013,(01):01AG07-01A1-5.
  • 2Chichibu S F,Sota T,Wada K. Impact of internal electric field and localization effect on quantum well excitons in AlGaN/GaN/InGaN light emitting diodes[J].Physica status solidi. A, Applied research,2001,(01):91-98.
  • 3Lee D Y,Han S H,Lee D J. Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple quantum well light-emitting diodes[J].Applied Physics Letters,2012,(04):041119-0411-3.
  • 4Nakamura S,Iwasa N,Senoh M. Hole compensation mechanism of p-type GaN films[J].Japanese Journal of Applied Physics,1992,(5R):1258-1261.
  • 5Zhang M,Bhattacharya P,Guo W. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions[J].Applied Physics Letters,2010,(13):132103-1321-3.
  • 6Obloh H,Bachem K H,Kaufmann U. Self-compensation in Mg doped p-type GaN grown by MOCVD[J].Journal of Crystal Growth,1998,(01):270-273.
  • 7Han S H,Lee D Y,Lee S J. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J].Applied Physics Letters,2009,(23):231123-2311-3.
  • 8David A,Grundmann M J,Kaeding J F. Carrier distribution in (0001) InGaN/GaN multiple quantum well lightemitting diodes[J].Applied Physics Letters,2008,(05):053502-0531-3.
  • 9Li H J,Kang J J,Li P P. Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer[J].Applied Physics Letters,2013,(01):011105-0111-3.
  • 10牛南辉,王怀兵,刘建平,刘乃鑫,邢燕辉,韩军,邓军,郭霞,沈光地.InGaN/GaN多量子阱蓝光LED的p-GaN盖层的MOCVD生长研究[J].光电子.激光,2006,17(5):517-521. 被引量:5

二级参考文献13

  • 1Nakamura S, Mukai T, Senoh M, et al, Candela-class high-brightness InGaN/AIGaN double-heterostructure bluelight-emitting diodes[J]. Appl Phys Lett, 1994,64 (13):1687-1689.
  • 2Nakamura S, Senoh M, Nagahama S, et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours[J].Appl Phys Lett , 1997,70(11): 1417-1419.
  • 3Nakamura S. The roles of structural imperfections in In-GaN-based blue light emitting diodes and laser diodes[J], Science, 1998,281:956-961.
  • 4WU Hui-ying,QIAN Ke-yuan,HU Fei, et al. Study on thermal performance of flip-chip high-power white LEDs[J].光电子·激光,2005,16(5):511-514. (in Chinese)
  • 5MIAO Hong-li, WANG Jin, XIE Chun-xia, et al. Develop LED white light illuminator[J. 光电子·激光,2004,15(6):657-659. (in Chinese)
  • 6Nakamura S,Mukai T,Senoh M, et al. Thermal annealing effects on P-type Mg-doped GaN films[J]. Jpn J Appl Phys, 1992,31 (2B): 139-142.
  • 7Nakamura S, Senoh M,Nagahama S, et al. InGaN/GaN/AIGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate[J], Appl Phys Lett , 1998,72(2):211-213.
  • 8Neugebauer J,Van de Walle C G. Chemical trends for accepter impurities in GaN[J]. J Appl Phys, 1999,85 (5):3003-3005.
  • 9Kaufmann U, Kunzer M, Maier M, et al. Nature of the 2.8 eV photoluminescence band in Mg doped GaN[J]. Appl Phys Lett, 1998,72(11): 1326-1328.
  • 10Cros A,Dimitrov R,Angerer H, et al. Influence of magnesium doping on the structural properties of GaN layers[J]. J Crystal Growth ,1997,181(3): 197-203.

共引文献4

同被引文献13

  • 1白俊雪,郭伟玲,俞鑫,樊星,刘建鹏,韩禹.注入电流对绿光高压LED光电特性的影响[J].发光学报,2014,35(1):101-104. 被引量:3
  • 2Sehnbert E F. Light-Emitting Diode[M]. 2rd Edition. Cambridge: Cambridge University Press, 2006: 71- 83.
  • 3Kim K H, Sang-Won L, Sung-Nam L. Effect of p- AlxGa1-x N electron blocking layer on optical and electrical properties in GaN-based light emitting diodes [J]. J. Vac. Sci. Technol. B, 2012, 30(6): 061204- 1-061204-3.
  • 4JooLH,KimT H, Hun L C. Optimum Mg doping conditions of GaP window layer in 600 nm multi- quantum well A1GalnP light emitting diode F JT. J. Solid State Science and Technol. , 2013, 2(6): R100- R104.
  • 5Sung-Nam L, JoongKon S, Sakong T, et al. Investigation of optical and electrical properties of Mg- doped p-InxGa1-x N, p-GaN and p-AlyGa1-y N grown by MOCVD[J]. J. Crystal Growth, 2004, 272: 455- 459.
  • 6Wonseok L, Limb J, Jae-Hyun R , et al. Effect of thermal annealing induced by p-type layer growth on the blue and green LED performance[J]. J. Crystal Growth, 2006, 287: 577-581.
  • 7Svensk O, Suihkonen S, Lang T, et al. Effect of growth conditions on electrical properties of Mg-doped p-GaN[J].J. Crystal Growth, 2007, 298: 811-814.
  • 8Wang Lei,Li Rui, Li Ding, et al. Strain modulation- enhanced Mg acceptor activation efficiency of Al0. 14 GaN0. 86/GaN supperlattices with A1N interlayer [J]. Appl. Phys. Lett., 2010, 96: 061110-1- 061110-3.
  • 9Kumakura K,Makimoto T, Kobayashi N. High hole concentration in Mg-doped InGaN grown by MOVPE [J]. J. Crystal Growth, 2000, 221: 267-270.
  • 10Tuna O, Hahn H, Kalisch H, et al. MOCVD growth, optical and electrical characterization of thick Mg-doped InGaN layers [J]. J. Crystal Growth, 2013, 370: 2-6.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部