摘要
本文主要利用二重积分求立体体积的方法解决如下问题:当储油罐发生变位时,油位高度和储油量的变化关系.可建立如下模型:当罐体发生纵向位倾斜角α时(以α=4.1°为例),利用二重积分算出储油量的体积V与油位高度的函数表达式,由函数表达式画出函数图像,由图像进行最小二乘法拟合,得到如下模型:y=-1.0923e-023x8+ 4.9804e-020x7-9.0757e-017x6+ 8.1202e-014x5-3.2139e-011x4-3.4521e-009x3+ 1.0044e-005x2-0.00032896x+ 0.0084474根据模型可得到罐体变位后油位高度间隔为1cm的罐容表标定值.
In this paper, the use of three-dimensional volume double integral seeks ways to solve the following problem: When the tank displacement occurs, oil level and oil volume changes relationships. Model can be established as follows: When the tank occurs when the tilt angle vertical position(in, for example), the use of double integral calculate the amount of oil and oil level volume V function expression, the function expression function to draw the image, the image least squares fit to obtain the following model: =-1.0923 0238+ 4.9804 02079.0757 0176+ 8.1202 01453.2139 0114 3.4521 0093+ 1.0044 00520.00032896 + 0.0084474 tank displacement interval after the oil tank capacity table height calibration values obtained according to the model of 1cm.
出处
《科教导刊》
2014年第7期212-213,共2页
The Guide Of Science & Education
基金
广西高等学校特色专业及课程一体化建设项目(GXTSZY2220)《数学与应用数学》,河池学院重点学科《应用数学》,《统计学》,新世纪教改工程2011年项目,2011年度广西教育厅科研项目—立项项目,2011年度院级青年科研立项A类项目,湖北省教育厅科研计划项目