期刊文献+

一种改进的蚁群算法在工艺规划与车间调度集成优化中的应用 被引量:5

Applications of An Improved Ant Colony Optimization ACO Algorithm in Integrated Process Planning and Scheduling
下载PDF
导出
摘要 改进标准蚁群算法的执行策略,可提高工艺规划和调度集成问题的求解质量和效率。通过节点集、有向弧/无向弧集、AND/OR关系,建立了基于AND/OR图的工艺规划和调度集成优化模型。提出一种求解工艺规划与车间调度集成问题的改进蚁群优化算法,采用了信息素动态更新策略避免收敛过慢和局部收敛,利用多目标优化策略提高求解质量。仿真结果证明了该算法的有效性。 The improvement of standard ant colony optimization (ACO) strategy is important to improve the quality and efficiency for integrated process planning and scheduling (IPPS). A graph-based optimization model for IPPS is constructed by means of node set, directed arc set/undirected arc set and relation of AND/OR. An improved ACO for IPPS is proposed, which avoids the slow convergence and the local convergence by dynamic pheromone update strategy, and improves the quality by multi-objective optimization strategy. The simulation result demonstrates the validity of the proposed algorithm for IPPS.
出处 《图学学报》 CSCD 北大核心 2014年第3期396-401,共6页 Journal of Graphics
基金 国家自然科学基金资助项目(51177046) 中央高校基本科研业务费专项资金资助项目(13MS100 14ZD37) 河北省自然科学基金资助项目(E2011502024)
关键词 工艺规划 调度 集成 优化 蚁群算法 process planning scheduling integration optimization ant colony optimization
  • 相关文献

参考文献8

  • 1Chryssolouris G,Chan S,Cobb W. Decision making on the factory floor:an integrated approach to process planning and scheduling[J].ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING,1984,(3-4):315-319.
  • 2Morad N,Zalzala A. Genetic algorithms in integrated process planning and scheduling[J].Journal of Intelligent Manufacturing,1999,(02):169-179.
  • 3Kumar R,Tiwari M K,Shankar R. Scheduling of flexible manufacturing systems:an ant colony optimization approach[J].Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2003,(10):1443-1453.
  • 4Kim Y K,Park K,Ko J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling[J].Computers & Operations Research,2003,(08):1151-1171.
  • 5董朝阳,孙树栋.基于免疫遗传算法的工艺设计与调度集成[J].计算机集成制造系统,2006,12(11):1807-1813. 被引量:10
  • 6Leung C W,Wong T N,Mak K L,Fung R Y K. Integrated process planning and scheduling by an agent-based ant colony optimization[J].Computers & Industrial Engineering,2010,(01):166-180.
  • 7Wong T N,Zhang Sicheng,Wang Gong,Zhang luping. Integrated process planning and scheduling-multi-agent system with two-stage ant colony optimization algorithm[J].International Journal of Production Research,2012,(21):6188-6201.
  • 8Kim Y K.查看详情.

二级参考文献5

  • 1YANG Y N,PARSAEI H R,LEEP H R.A prototype of a feature-based multiple-alternative process planning system with scheduling verification[J].Computer and Industrial Engineering,2001,39(1-2):109-124.
  • 2CHANG H C,CHEN F F.A dynamic programming based process planning selection strategy considering utilisation of machines[J].International Journal of Advanced Manufacturing Technology,2002,19(2):97-105.
  • 3LEE H.KIM S S.Integration of process planning and scheduling using simulation based genetic algorithms[J].International Journal of Advanced Manufacturing Technology,2001,18(8):586-590.
  • 4ZHANG Jie,GAO Liang,CHAN F T S,et al.A Holonic architecture of the concurrent integrated process planning system[J].Journal of Materials Processing Technology,2003,139(1):267-272.
  • 5谢胜利,黄强,董金祥.求解JSP的遗传算法中不可行调度的方案[J].计算机集成制造系统-CIMS,2002,8(11):902-906. 被引量:12

共引文献9

同被引文献34

  • 1王忠宾,王宁生,陈禹六.基于遗传算法的工艺路线优化决策[J].清华大学学报(自然科学版),2004,44(7):988-992. 被引量:38
  • 2张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:110
  • 3田颖,江平宇,周光辉,赵刚.基于遗传算法的工艺规划与调度集成方法[J].西安交通大学学报,2006,40(9):1041-1044. 被引量:12
  • 4Wang Y F, Zhang Y F, Fuh J Y H. A hybrid particle swarm based method for process planning optimization [J]. International Journal of Production Research, 2012, 50(1): 277-292.
  • 5Zhang F, Zhang Y F, Nee A Y C. Using genetic algorithms in process planning for job shop machining [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(4): 278-289.
  • 6Li W D, Ong S K, Nee A Y C. Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts [J]. International Journal of Production Research, 2002, 40(8): 1899-1922.
  • 7Yang X S. A new metaheuristic bat-inspired algorithm nature inspired cooperative strategies for optimization (NICSO) [J]. Studies in Computational Intelligence, 2010, 284: 65-74.
  • 8Li W D, Ong S K, Nee A Y C. Optimization of process plans using a constraint-based tabu search approach [J]. International Journal of Production Research, 2004, 42(10): 1955-1985.
  • 9Guo Y W, Mileham A R, Owen G W, et al. Operation sequencing optimization using a particle swarm optimization approach [J]. Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, 2006, 220(12): 1945-1958.
  • 10张超勇,管在林,刘琼,邵新宇,李培根.一种新调度类型及其在作业车间调度中的应用[J].机械工程学报,2008,44(10):24-31. 被引量:23

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部