期刊文献+

基于SVM的地面成像光谱数据田间杂草识别研究 被引量:4

SVM-based Weed Identification Using Field Imaging Spectral Data
下载PDF
导出
摘要 为提高当前田间杂草识别精度,利用地面成像光谱数据研究多特征参与的SVM田间杂草识别方法,根据地面成像光谱数据的特点提取田间作物杂草的多种可区分特征,包括纹理特征、连续统去除后的光谱特征和高光谱植被指数特征,并对高维特征集进行降维,利用多种多特征组合参与SVM田间杂草识别。实验结果证明,在训练样本一致的前提下,多特征参与的SVM田间杂草识别精度优于仅使用原始光谱特征时的情况,使用包含原始光谱特征、纹理特征、高光谱植被指数特征和连续统去除后的光谱特征的多特征组合时田间杂草识别精度最高。 Weed identification is a fundamental task for precision agriculture as well as a premise for variable spraying and accurate weeding.With both of high spectral resolution and high spatial resolution,the use of the field imaging spectral data on weed identification has a bright future.Compared with any other classification and identification method,the SVM algorithm enjoys many advantages.Since the uncertainty of the object spectrum,the use of the original spectral features only may restrict the accuracy of the SVM classification and identification.In order to improve the accuracy of the weed identification,multiple features were involved in the SVM-based weed identification using imaging spectral data.Features that enable weed identification were extracted.Meanwhile,the feature dimension was reduced.This experiment shows that the SVM-based weed identification with multiple features is more accurate than the SVM-based weed identification with original features only.
作者 李颖
出处 《遥感信息》 CSCD 2014年第1期40-43,50,共5页 Remote Sensing Information
基金 公益性行业(气象)科研专项项目(GYHY200906022)
关键词 杂草识别 地面成像光谱数据 多特征 SVM weed identification field imaging spectral data multiple features SVM
  • 相关文献

参考文献14

  • 1SLAUGHTER D C,GILES D K,FENNIMORE S A. Multispectral machine vision identification of lettuce and weed seedlings for automated weed control[J].Weed Technology,2008,(02):378-384.
  • 2SWAIN K C,NORREMARK M,JORGENSEN R N. Weed identification using an automated active shape matching (AASM) technique[J].BIOSYSTEMS ENGINEERING,2011,(04):450-457.
  • 3童庆禧;张兵;郑兰芬.高光谱遥感-原理、技术与应用[M]北京:高等教育出版社,200638-44.
  • 4刘波,方俊永,刘学,张立福,张兵,童庆禧.基于成像光谱技术的作物杂草识别研究[J].光谱学与光谱分析,2010,30(7):1830-1833. 被引量:20
  • 5MOUSTAKIDIS S,MALLINIS G,KOUTSIAS N. SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images[J].Geoscience and Remote Sensing IEEE Transactions on,2012,(01):149-169.
  • 6SEGATA N,PASOLLI E,MELGANI F. Local SVM approaches for fast and accurate classification of remote-sensing images[J].International Journal of Remote Sensing,2012,(19):6186-6201.
  • 7MAULIK U,CHAKRABORTY D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,(77):66-78.
  • 8PAL M,MATHER P M. Support vector classifiers for land cover classification[A].Haryana,India,2003.
  • 9MELGANI F,BRUZZONE L. Classification of hyperspeetral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,(08):1778-1790.
  • 10杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. 被引量:34

二级参考文献46

  • 1Wang N,Zhang N,Dowell F E Y S,et al.Transactions of the ASAE,2001,44(2):409.
  • 2Alchanatis V,Ridel L,Hetzroni A,et al.Computer and Electronics in Agriculture,2005,47:243.
  • 3Goel P K,Prasher S O,Patel R M,et al.Transactioas of the ASAE,2002,45(2):443.
  • 4Onyango C M,Marchant J A.Computer and Electronies in Agriculture,2003,39:141.
  • 5Tillett N D,Hague T,Miles S J.Computer and Electronics in Agriculture,2001,32:229.
  • 6Perez A,Lopez F,Benlloch J V,et al.Computer and Electronics in Agriculture,2000,25:197.
  • 7Virndts E,De Baerdemaeker J,Ramon H.Predsion Agriculture,2002,3:63.
  • 8Borregaard T,Nielsen H,Norgaard L,et al.Journal of Agricultural Engineering Research,2000,75(4):389.
  • 9Fevaerts F,Van Cool L.Pattern Recognition Letters,2001,22:667.
  • 10Piron A,Leemans V,Kleynen O,et al.Computer and Electronics in Agriculture,2008,62:141.

共引文献52

同被引文献54

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部