摘要
本文对下述边值问题εU_(tt)+U_t-U_(xx)=f(x,t) 0<X<1,0<t<TU(0,t)=U(1,t)=0 0<t<TU(x,0)=S(x),Ut(x,0)=W(x) 0<x<1的可解性进行了研究,认为可以放宽文[1]中对函数f、s、w所作的假定,满足一般的可积性条件即可.
In this paper,we consider the solvable condition of the boundary value problem:εUtt+Ut-Uxx=f(x,t) 0<x<1 , 0<t<TU(0,t) =U(1,t) =0 0<t<TU(x, 0)=S(x), Ut(x, 0)=w (x) 0<x<1 We hold that the suppositions on the functions f,s, win the article [1] could be soften the terms, it is enough for the functions f,s, w if letthem to sans fy general integrability condition.
关键词
伴随方程
可解性条件
边值问题
conjugate equation, solvable condition, boundary value problem.