摘要
本文提出了一种结合了生物进化和群体智能思想的新型智能算法,并应用于水库群的梯级调度优化研究中。本算法以人工蜂群算法中群体协作的正反馈机制、个体分工的性态多样性思想、优良的全局搜索能力、并行计算性及较强的鲁棒性为基础,进行问题空间的全局寻优;在个体的局部寻优行为中,引入遗传算法的杂交和变异算子来优化侦查蜂路径,避免陷入早熟问题。同时针对梯级调度优化中常见的多维变量约束条件,借鉴模拟退火算法思想,在目标函数中构造了惩罚因子,使得带约束问题转化为了纯粹的优化问题。经实例验证,本算法具有普遍的梯级调度优化解决能力,并与传统的遗传算法及人工粒子群算法相比,具有更好的精度、收敛速度和寻优能力。
出处
《水电厂自动化》
2014年第1期39-41,48,共4页
Hydropower Plant Automation