期刊文献+

Adaptive Subspace Predictive Control with Time-varying Forgetting Factor 被引量:3

Adaptive Subspace Predictive Control with Time-varying Forgetting Factor
原文传递
导出
摘要 Aiming at the time-varying characteristics of industrial process, this paper introduces an adaptive subspace predictive control(ASPC) strategy with time-varying forgetting factor based on the original subspace predictive control algorithm(SPC). The new method uses model matching error to calculate the variable forgetting factor, and applies it to constructing Hankel data matrix.This makes the data represent the changes of system information better. For eliminating the steady state error, the derivation of the incremental control is made. Simulation results on a rotary kiln show that this control strategy has achieved a good control effect. Aiming at the time-varying characteristics of industrial process, this paper introduces an adaptive subspace predictive control(ASPC) strategy with time-varying forgetting factor based on the original subspace predictive control algorithm(SPC). The new method uses model matching error to calculate the variable forgetting factor, and applies it to constructing Hankel data matrix.This makes the data represent the changes of system information better. For eliminating the steady state error, the derivation of the incremental control is made. Simulation results on a rotary kiln show that this control strategy has achieved a good control effect.
出处 《International Journal of Automation and computing》 EI CSCD 2014年第2期205-209,共5页 国际自动化与计算杂志(英文版)
关键词 Subspace predictive control time-varying forgetting factor model matching error adaptive rotary kiln. Subspace predictive control,time-varying forgetting factor,model matching error,adaptive,rotary kiln.
  • 相关文献

参考文献7

二级参考文献41

  • 1薛振框,李少远.基于模型有效匹配的多模型切换控制[J].上海交通大学学报,2005,39(3):353-356. 被引量:4
  • 2李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 3MERCERE G, LECOEUCHE S, LOVERA M. Recursive subspace identification based on instrumental variable unconstrained quadratic optimization[J]. International Journal of Adapt Control Signal Process, 2004, 18(4): 771 - 797.
  • 4JIANG Y, FANG H. Recursive subspace identification based on principal component analysis[C]//Proceedings of the 25th Chinese Control Conference. Harbin, China: [s.n.], 2006.
  • 5LOVERA M, GUSTAFSSON T, VERHAEGEN M. Recursive subspace identification of linear and non-linear Wiener state-space models[J]. Automatica, 2000, 36(11): 1639- 1650.
  • 6OKU H, KIMURA H. Recursive 4SID algorithms using gradient type subspace tracking[J]. Automatica, 2002, 38(6): 1035 - 1043.
  • 7ZHANG C, BITMEAD R R. Subspace system identification for training-based MIMO channel estimation[J]. Automatica, 2005, 41(9): 1623 - 1632.
  • 8YANG B. Asymptotic convergence analysis of the projection approximation subspace tracking algorithms[J]. Signal Processing, 1996, 50(1/2): 123- 136.
  • 9SCHRAMM H, GRUNER S, KIENLE A. Optimal operation of simulated moving bed chromatographic process by means of simple feed- back control[J]. Journal of Chromatography A, 2003, 1006(1/2): 3 - 13.
  • 10FAVOREEL W, MOOR B D, OVERSCHEE P V. Subspace state space system identification for industrial process[J]. Journal of Process Control, 2000, 10(2/3): 149- 155.

共引文献59

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部