摘要
利用经验模态分解方法对洗煤厂设备的振动信号进行分析。得出健康状况下和非健康状况下特征向量值的不同。实验显示特征向量可以很直观地反应设备的运行状态,可以根据特征向量为洗煤厂机械设备建立健康模式库,为工作人员提供直观的数字化信息。
(empirical mode decomposition,EMD)is used to analyze vibration signals of mechanical equipments in coal washery.Different vector-valued characteristics under healthy condition and unhealthy condition were extracted.The experiment showed that vector-valued characteristics directly reflected running states of the equipments.Accordingly healthy pattern library of mechanical equipments in coal washery could be established based on vector-valued characteristics and the library would provide intuitive digital information for the staff.
出处
《河北北方学院学报(自然科学版)》
2014年第3期24-27,共4页
Journal of Hebei North University:Natural Science Edition
基金
贵州师范学院自然科学基金项目:多传感器数据融合技术在洗煤厂Zigbee监测系统中的应用研究(13ZC006)
关键词
特征向量
振动信号
经验模态分解
健康模式库
vector-valued characteristics
vibration signals
(empirical mode decomposition,EMD)
healthy pattern library