摘要
基于HTTP协议进行网络通信的木马能够躲避部分网络安全监控系统的检测,是互联网安全的一个重大威胁。通过对该类木马样本和普通程序样本网络行为的对比分析,得到该类木马的6个网络行为特征,综合利用层级聚类、Davies-Bouldin指数和k-means聚类方法提出了一种木马检测模型,实现了HTTP木马检测。结果表明,该HTTP木马检测模型准确率较高,误报率较低。
HTTP-based Trojans which can avoid detection by a network security monitoring system are a major threat to internet security. In this paper we obtain six characteristics that can represent the network behavior of such Trojans through analyzing and comparing the network behavior of HTTP-based Trojan and normal program samples. We propose a model for Trojan detection that utilizes a single-linkage hierarchical clustering algorithm,the Davies-Bouldin index and a k-means clustering algorithm. The results show that the model of Trojan detection is suitable for detecting Trojans with high accuracy and low false positive ratios.
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第3期114-118,共5页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金
中央高校基本科研业务费(zz1311)