摘要
在坡上讨论研究矩阵积和式的三类问题:首先,证明当Per(A)=1时,矩阵A的行与列的元素是互补的,同时给出矩阵A可逆的条件;其次,讨论积和式Per(A)与Per(AB)及Per(A+B)间的不等关系,给出若干不等式;最后,研究给出矩阵积和式Per(A)的若干分解.这些结果推广了分配格和交换坡上的相应的结论.
In this paper,three main problems on permanents of incline matrices are discussed.First,we prove that the rows and columns of matrix A are mutual complement when Per(A) = 1.Thus a necessary and sufficient condition is given for a matrix A with Per(A) = 1 to be invertible.Second,the relations among Per(A),Per(AB) and Per(A + B) are investigated.Third,a decomposition is given for Per(A).These results can be regarded as the generalizations of the previous results on the permanents of matrices over distributive lattice and commutative incline.
出处
《生物数学学报》
2014年第1期34-44,共11页
Journal of Biomathematics
基金
Supported by the Natural Science Foundation of Fujian Province(2008J0186),China
关键词
坡
坡矩阵
积和式
Incline
Incline matrix
Permanent