期刊文献+

四元拟循环码的代数结构 被引量:1

Algebraic construction of Quasi-cyclic codes over Z_4
原文传递
导出
摘要 本文研究了Z4上的拟循环码,证明了Z4上的长度为mn的拟循环码等价于一个An的A-子模,其中A=Z4[x]/(xm-1),在m为奇数的时候,所有的拟循环码均可以分解为一些有限数目的循环不可约A-子模的直和。 本文研究了Z4上的拟循环码,证明了Z4上的长度为mn的拟循环码等价于一个An的A-子模,其中A=Z4[x]/(xm-1),在m为奇数的时候,所有的拟循环码均可以分解为一些有限数目的循环不可约A-子模的直和。
出处 《佳木斯教育学院学报》 2012年第2期128-,130,共2页 Journal of Jiamusi Education Institute
关键词 四元拟循环码 子模 直和 Quasi-codes over Z4 submodules direct sum
  • 相关文献

参考文献5

  • 1Junying PEI Xuejun ZHANG.1-GENERATOR QUASI-CYCLIC CODES[J].Journal of Systems Science & Complexity,2007,20(4):554-561. 被引量:3
  • 2Wan Z X.Cyclic codes over Galois rings[].Algebra Colloquium.1996
  • 3K.Lally,P.Fitzpatrick.Algebraic structure of quansi-cycliccodes[].Discr ApplMath.2001
  • 4Pless V S,Qian Z.Cyclic codes and Quadratic residue codes over Z 4[].IEEE Transactions on Information Theory.1996
  • 5S. Ling,P. Solé.On the algebraic structure of quasi-cyclic codes I: finite fields[].IEEE-IT.2001

二级参考文献9

  • 1G. E. Seguin, A class of 1-generator quasi-cyclic codes, IEEE Trans. Inform. Theory, 2004, 50: 1745-1753.
  • 2V. K. Bhargava, G. E. Seguin, and J. M. Stein, Some (mk, k) cyclic codes in quasi-cyclic form, IEEE Trans. Inform. Theory, 1978, 24:630-632.
  • 3T. A. Gulliver and V. K. Bhargava, Two new rate 2/P binary quasi-cyclic codes, IEEE Trans. Inform. Theory, 1994, 40:1667-1668.
  • 4S. E. Tavares, V. K. Bhargava, and S. G. S. Shiva, Some rate P/P + 1 quasi-cyclic codes, IEEE Trans. Inform. Theory, 1974, 20:133-135.
  • 5K. Lally and P. Fitzpatrick, Algebraic structure of quasi-cyclic codes, Discr. Appl. Math., 2001,246: 157-175.
  • 6S. Ling and P. Sole, On the algebraic structure quasi-cyclic codes Ⅰ: Finite fields, IEEE Trans. Inform. Theory, 2001, 47:2751-2760.
  • 7S. Ling and P. Sole, On the algebraic structure quasi-cyclic codes Ⅱ: chain rings, Designs, Codes, and Crypotography, 2003, 30: 113-130.
  • 8B. K. Dey and B. S. Rajan, IFq-linear cyclic codes over IFqm:DFT characterization, in Lecture Notes in Computer Science (ed. by S. Bozatas and I. E. Shparlinski), 2001, 2227:67-76.
  • 9R. M. Tanner, A transformation theory for a class of group invariant codes, IEEE Trans. Inform. Theory, 1998, 34:752-775.

共引文献2

同被引文献5

  • 1SHANNON C E. A Mathematical Theory of Communication[J]. Bell Syst Tech J, 1948, 27: 623-656.
  • 2HAMMONS A R, KUMAR P V, CALDERBANK A R, et al. The Z4 -linearity of Kerdock, Prepatata, Goethals and Related Codes[J]. IEEE Trans Inform Theory, 1994, 40:301-319.
  • 3PLESS V, QIAN Z. Cyclic Codes and Quadratic Residue Codes over Z4 [J]. IEEE Trans Inform Theory, 1996, 42: 1594-1600.
  • 4WAN Z X. Cyclic Codes over Galois Rings[J]. Algebra Colloquium, 1996, 6: 291-304.
  • 5LING S, SOLE P. On the Algebric Structure Quasi-cyclic Codes I; Finite fields[J]. IEEE Ttrans Iinform Ttheory, 2001, 47 2751-2760.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部