期刊文献+

垃圾填埋场中真细菌群落16S rRNA基因的分析 被引量:1

Characterization of Eubacteria Community in Landfill by Determining Restriction Fragment Length Polymorphisms of 16S rRNA Genes
下载PDF
导出
摘要 回灌式垃圾填埋场渗滤液中真细菌群落的多样性同样通过不依赖于微生物培养的分析而获得。利用特异性的引物对,选择性地扩增渗滤液DNA中的真细菌16S rRNA基因片断(16S rDNA),并用于构建16S rDNA克隆文库。文库内真细菌16S rDNA的遗传多样性通过限制片断长度多态性分析(RFLP,限制性内切酶Hin PII和Msp I)而获得。初步的结果表明,随机选出的200个真细菌克隆子被分为147个不同的RFLP型(组),当中丰度最高的两个型均仅含有9个克隆子,两者共占所有被分析克隆子的不到10%;克隆子数≥2的型共有21个(包括以上2个丰度最高的型),它们共代表74个克隆子,占所有被分析克隆子的37%;而剩下的126个型均只含有1个克隆子,它们共占整个基因文库的63%。由此可见,李坑垃圾渗滤液中的真细菌具有非常复杂的群落结构。 回灌式垃圾填埋场渗滤液中真细菌群落的多样性同样通过不依赖于微生物培养的分析而获得。利用特异性的引物对,选择性地扩增渗滤液DNA中的真细菌16S rRNA基因片断(16S rDNA),并用于构建16S rDNA克隆文库。文库内真细菌16S rDNA的遗传多样性通过限制片断长度多态性分析(RFLP,限制性内切酶Hin PII和Msp I)而获得。初步的结果表明,随机选出的200个真细菌克隆子被分为147个不同的RFLP型(组),当中丰度最高的两个型均仅含有9个克隆子,两者共占所有被分析克隆子的不到10%;克隆子数≥2的型共有21个(包括以上2个丰度最高的型),它们共代表74个克隆子,占所有被分析克隆子的37%;而剩下的126个型均只含有1个克隆子,它们共占整个基因文库的63%。由此可见,李坑垃圾渗滤液中的真细菌具有非常复杂的群落结构。
出处 《环境科学与技术》 CAS CSCD 北大核心 2012年第S2期8-11,20,共5页 Environmental Science & Technology
基金 广东省水环境污染控制重点实验室开放基金(2011001)
关键词 垃圾填埋场 渗滤液回灌 真细菌 16SRRNA基因 RFLP landfill leachate recirculation bacteria 16S rRNA genes RFLP
  • 相关文献

参考文献16

  • 1黄立南,周惠,陈月琴,罗硕,蓝崇钰,屈良鹄.垃圾填埋场渗滤液中古细菌群落16S rRNA基因的ARDRA分析[J].生态学报,2002,22(7):1085-1090. 被引量:15
  • 2Bond P L,Hugenholtz P,Keller J,et al.Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Applied and Environmental Microbiology . 1995
  • 3Dojka MA,Hugenholtz P,Haack SK,et al.Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology . 1998
  • 4H. Belevi,P. Baccini.Long-term behavior of municipal solid waste landfills. Waste Management . 1989
  • 5Reinhart D R,Townsend T G.Landfill bioreactor design and operation. . 1998
  • 6Reinhart D R.Full-scale experiences with leachate recirculating landfills: case studies. Waste Management . 1996
  • 7Sekiguchi Y,Kamagata Y,Syutsubo K,et al.Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology . 1998
  • 8Vaneechoutte M,Rossau R,Vos P D,et al.Rapid identification of bacteria of the comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letters . 1992
  • 9Cowan D A.Microbial genomes-the untapped resource. Trends in Biotechnology . 2000
  • 10Li-Nan Huang,Yue-Qin Chen,Hui Zhou,Shuo Luo,Chong-Yu Lan,Liang-Hu Qu.Characterization ofmethanogenic Archaea in the leachate of a closedmunicipal solid waste landfill. FEMS MicrobiologyEcology . 2003

二级参考文献20

  • 1[1]Archer D B and Kirsop B H. The microbiology and control of anaerobic digestion. In: Wheatley A ed. Anaerobic digestion: a waste treatment technology. Elsevier Science Publishing Ltd., London, 1990.43~89.
  • 2[2]Chynoweth D P and Pullammanappallil P. Anaerobic digestion of municipal solid wastes. In: Palmisano A C and Barlaz M A eds. Microbiology of solid waste. CRC Press, Boca Raton, FL, 1996.71~113.
  • 3[3]Eastman J A and Ferguson J F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. Water Pollut. Control Fed., 1981, 53: 352~366.
  • 4[4]Amann R I, Ludwig W, and Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59(1): 143~169.
  • 5[5]Giovannoni S J, Brischgi T B, Moyer C L, et al. Genetic diversity in Sargasso Sea bacteraplankton. Nature (London), 1990, 345: 60~63.
  • 6[6]Ward D M, Weller R, and Bateson M M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London), 1990, 345: 63~65.
  • 7[7]Wu J H, Liu W T, Tseng I C, et al. Characterizaition of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol., 2001, 147: 373~382.
  • 8[8]Sekiguchi Y, Kamagata Y, Syutsubo K, et al. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol., 1998, 144: 2655~2665.
  • 9[9]Godon J J, Zumstein E, Dabert P, et al. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol., 1997, 63(7): 2802~2813.
  • 10[10]Brambilla E, Hippe H, Hagelstein A, et al. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles., 2001, 5: 23~33.

共引文献14

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部