期刊文献+

Remote sensing and census based assessment and scope for improvement of rice and wheat water productivity in the Indo-Gangetic Basin

Remote sensing and census based assessment and scope for improvement of rice and wheat water productivity in the Indo-Gangetic Basin
原文传递
导出
摘要 Understanding of crop water productivity (WP) over large scale, e.g., river basin, has significant impli-cations for sustainable basin development planning. This paper presents a simplified approach to combine remote sensing, census and weather data to analyze basin rice and wheat WP in Indo-Gangetic River Basin, South Asia. A crop dominance map is synthesized from ground truth data and three existing LULC maps. National statistics on crop area and production information are collected and the yield is interpolated to pixel level using moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI). Crop evapotranspiration is mapped using simplified surface energy balance (SSEB) model with MODIS land surface temperature products and meteorological data collected from 56 weather stations. The average ET by rice and wheat is 368 mm and 210 mm respectively, accounting for only 69% and 65% of potential ET, and 67% and 338% of rainfall of the crop growth period measured from Tropical Rainfall Measurement Mission (TRMM). Average WP for rice and wheat is 0.84 and 1.36 kg/m3 respectively. WP variability generally follows the same trend as shown by crop yield disregarding climate and topography changes. Sum of rice-wheat water productivity, however, exhibits different variability leading to better understanding of irrigation water management as wheat heavily relies on irrigation. Causes for variations and scope for improvement are also analyzed. Understanding of crop water productivity (WP) over large scale, e.g., river basin, has significant implications for sustainable basin development planning. This paper presents a simplified approach to combine remote sensing, census and weather data to analyze basin rice and wheat WP in Indo-Gangetic River Basin, South Asia. A crop dominance map is synthesized from ground truth data and three existing LULC maps. National statistics on crop area and production information are collected and the yield is interpolated to pixel level using moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI). Crop evapotranspiration is mapped using simplified surface energy balance (SSEB) model with MODIS land surface temperature products and meteorological data collected from 56 weather stations. The average ET by rice and wheat is 368 mm and 210 mm respectively, accounting for only 69% and 65% of potential ET, and 67% and 338% of rainfall of the crop growth period measured from Tropical Rainfall Measurement Mission (TRMM). Average WP for rice and wheat is 0.84 and 1.36 kg/m3 respectively. WP variability generally follows the same trend as shown by crop yield disregarding climate and topography changes. Sum of rice-wheat water productivity, however, exhibits different variability leading to better understanding of irrigation water management as wheat heavily relies on irrigation. Causes for variations and scope for improvement are also analyzed.
作者 SHARMA Bharat
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第11期3300-3308,共9页 中国科学(技术科学英文版)
关键词 CROP water PRODUCTIVITY remote sensing CENSUS Indo-Gangetic BASIN crop water productivity remote sensing census Indo-Gangetic Basin
  • 相关文献

参考文献1

二级参考文献72

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部