摘要
In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In the model,the perturbations from Jupiter and Saturn are considered.Variations of the mass of outer planet,and the initial eccentricities and inclinations of embryos and planetesimals are also considered.Our results show that,terrestrial planets are formed in 50 Ma,and the accretion rate is about 60%-80%.In each simulation,3-4 terrestrial planets are formed inside"Jupiter"with masses of 0.15 -3.6M⊕.In the 0.5-4 AU,when the eccentricities of planetesimals are excited,planetesimals are able to accrete material from wide radial direction.The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism.Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 10 8 a.In one of our simulations,commensurability of the orbital periods of planets is very common.Moreover,a librating-circulating 3:2 configuration of mean motion resonance is found.
In this paper, the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model. At that time, the protostar formed for about 3 Ma and the gas disk dissipated. In the model, the perturbations from Jupiter and Saturn are considered. Variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals are also considered. Our results show that, terrestrial planets are formed in 50 Ma, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M ⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 a. In one of our simulations, commensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
作者
ZHANG Niu 1,2 &JI JiangHui 2,3 1Graduate University of Chinese Academy of Sciences,Beijing 100049,China
2Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210008,China
3 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100012,China
基金
Supported by the National Natural Science Foundation of China(Grant Nos.10573040,10673006,10833001,and 10233020)
the Foundation of Minor Planets of Purple Mountain Observatory