期刊文献+

A higher order lattice BGK model for simulating some nonlinear partial differential equations 被引量:3

A higher order lattice BGK model for simulating some nonlinear partial differential equations
原文传递
导出
摘要 In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective. In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form u t + αuu x + βu n u x ? γu xx + δu xxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第7期1053-1061,共9页 中国科学:物理学、力学、天文学(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No 10661005) the Science and Technology Plan Item of Fujian Province (Grant No 2008F5019)
关键词 nonlinear partial differential equation LATTICE BOLTZMANN model MULTI-SCALE technique TAYLOR series EXPANSION Chapman-Enskog EXPANSION nonlinear partial differential equation lattice Boltzmann model multi-scale technique Taylor series expansion Chapman-Enskog expansion
  • 相关文献

参考文献6

二级参考文献33

  • 1[1]Benzi R,Sucei S,Vergasola M.The lattice Bohzmann equa-tion:theory and applications[J].Phys Rep,1992,222:145-158.
  • 2[2]Chen S,Doolen G n Lattice Bohzmann method for fluid flows[J].Annu Rev Huid Mech,1998,30:329-341.
  • 3[3]qian Y,DHumieres D,Lallemand P.Lattice BGK models for Navier-Stokes equation[J].Europhys Lett,1992,17:479-488.
  • 4Dawson S P,J Chem Phys,1993年,98卷,1514页
  • 5Grunau D,Phys Fluids A,1993年,5卷,2557页
  • 6Qian Y, D'Humieres D and Lallemand P J 1992 Europhys.Lett. 17 479.
  • 7Li K and Gao Z J 2004 Chin. Phys. Lett. 21 2120.
  • 8Wang J, Cao L and Wu D J 2004 Chin. Phys. Lett. 21 246.
  • 9Qian M, Wang Y and Zhang X J 2003 Chin. Phys. Lett.20 810.
  • 10Shen Z, Yuan G and Shen L J 2000 Chin. J. Comput. Phys.17166.

共引文献179

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部