期刊文献+

Three-dimensional correlated-fermion phase separation from analysis of the geometric mean of the individual susceptibilities

Three-dimensional correlated-fermion phase separation from analysis of the geometric mean of the individual susceptibilities
原文传递
导出
摘要 A quasi-Gaussian approximation scheme is formulated to study the strongly correlated imbalanced Fermions thermodynamics, where the mean-field theory is not applicable. The non-Gaussian correlation effects are understood to be captured by the statistical geometric mean of the individual susceptibilities. In the three-dimensional unitary fermions ground state, a universal nonlinear scaling transformation relates the physical chemical potentials with the individual Fermi kinetic energies. For the partial polarization phase separation to full polarization, the calculated critical polarization ratio is δC = [1-(1-ξ)6/5]/[1+(1-ξ )6/5] 0.34. ξ = 4/9 gives the ratio of the symmetric ground state energy density to that of the ideal fermion gas. A quasi-Gaussian approximation scheme is formulated to study the strongly correlated imbalanced Fermions thermodynamics, where the mean-field theory is not applicable. The non-Gaussian correlation effects are understood to be captured by the statistical geometric mean of the individual susceptibilities. In the three-dimensional unitary fermions ground state, a universal nonlinear scaling transformation relates the physical chemical potentials with the individual Fermi kinetic energies. For the partial polarization phase separation to full polarization, the calculated critical polarization ratio is δ C = [1?(1?ξ)6/5]/[1+(1?ξ)6/5] ? 0.34. ξ = 4/9 gives the ratio of the symmetric ground state energy density to that of the ideal fermion gas.
机构地区 Physics Department
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第9期1324-1329,共6页 中国科学:物理学、力学、天文学(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant Nos. 10875050 and 10675052) the Fund of Central China Normal University the Foundation of Ministry of Education of China (Grant No. IRT0624)
关键词 phase separation GEOMETRIC mean SUSCEPTIBILITY quasi-Gaussian approximation phase separation geometric mean susceptibility quasi-Gaussian approximation
  • 相关文献

参考文献2

二级参考文献70

  • 1Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
  • 2Altmeyer A, Riedl S, Kohstall C, Wright M J, Geursen R, Bartenstein M, Chin C, Denschlag J H and Grimm R 2007 Phys. Rev. Lett. 98 040401
  • 3Heiselberg H 2001 Phys. Rev. A 63 043606
  • 4Chen J S 2007 Chin. Phys. Lett. 24 1825
  • 5Schwenk A and Pethick C J 2005 Phys. Rev. Lett. 95 160401
  • 6Xiong H W, Liu S J, Zhang W P and Zhan M S 2005 Phys. Rev. Lett. 95 120401
  • 7Ho T L 2004 Phys. Rev. Lett. 92 090402
  • 8Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature (London) 435 1047
  • 9Giorgini S, Pitaevskii L P and Stringari S 2007 arXiv preprint:0706.3360
  • 10Chen J S, Cheng C M, Li J R and Wang Y P 2007 Phys. Rev. A 76 033617

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部