期刊文献+

Study of GaN MOS-HEMT using ultrathin Al_2O_3 dielectric grown by atomic layer deposition 被引量:2

Study of GaN MOS-HEMT using ultrathin Al_2O_3 dielectric grown by atomic layer deposition
原文传递
导出
摘要 We report on a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) using atomic-layer deposited (ALD) Al2O3 as the gate dielectric. Through further decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process,a device with maximum transconductance of 150 mS/mm was produced. The drain current of this 0.8 μm gate-length MOS-HEMT could reach 800 mA/mm at +3.0 V gate bias. Compared to a conventional AlGaN/GaN HEMT of similar design,better interface property,lower leakage current,and smaller capacitance-voltage (C-V) hysteresis were obtained,and the superiority of this MOS-HEMT device structure with ALD Al2O3 gate dielectric was exhibited. We report on a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) using atomic-layer deposited (ALD) Al2O3 as the gate dielectric. Through further decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process,a device with maximum transconductance of 150 mS/mm was produced. The drain current of this 0.8 μm gate-length MOS-HEMT could reach 800 mA/mm at +3.0 V gate bias. Compared to a conventional AlGaN/GaN HEMT of similar design,better interface property,lower leakage current,and smaller capacitance-voltage (C-V) hysteresis were obtained,and the superiority of this MOS-HEMT device structure with ALD Al2O3 gate dielectric was exhibited.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第9期2762-2766,共5页 中国科学(技术科学英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 60736033) the National Basic Research Program of China ("973") (Grant No. 51327020301)
关键词 ALD ULTRATHIN AL2O3 ALGAN/GAN MOS-HEMT ALD,ultrathin Al2O3,AlGaN/GaN MOS-HEMT
  • 相关文献

参考文献1

二级参考文献10

  • 1Khan M A, Van Hove J M, Kuznia J N and Olsen D T 1991 Appl. Phys, Lett. 58 2408.
  • 2Shen L, Coffic R, Buttari D,Heikman S, Chakraborty A,Chini A, Keller S, DenBaars S P and Mishra U K 2004 IEEE Electron. Device Lett, 25 7.
  • 3Wu Y E, Saxler A, Moore M, Smith R P, Sheppard S,Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117.
  • 4Johnson J W, Piner E L, Vescan A, Therrien R,Rajagopal P, Roberts J C, Brown J D, Singhal S and Linthicum K J 2004 IEEE Electron. Device Lett. 25 459.
  • 5Hasegawa H and Oyama S 2002 J. Vac. Sci. Technol. B:Microclectron. Process, Phenom. 20 1647.
  • 6Khan M A, Hu X, Tarakji A, Simin G, Yang J, Gasket R and Shur M S 2000 Appl. Phys. Lett. 77 1339.
  • 7Hu X, Koudymov A, Simin G, Yang J and Khan M A 2001 Appl. Phys. Lett, 79 2832.
  • 8Khan M A, Simin G, Yang J W, Zhang J P, Koudymov A, Shur M S, Gaska R, Hu X H and Tarakji A 2004 IEEE Trans, Microwave Theory Technol, 51 624.
  • 9Liang J, Wu, H Z, Lao Y F, Qiu D J, Chen N B and Xu T N 2004 Chin. Phys. Lett. 21 1135.
  • 10Wu T, Hao Z B, Tang G and Luo Y 2003 Jpn. J. Appl.Phys. 42 L257.

共引文献2

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部