期刊文献+

Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites 被引量:17

Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites
原文传递
导出
摘要 Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial tensile loading with prominent tensile strain capacity in excess of 3%, with merely 60 μm average crack width even corresponding to the ultimate tensile strain state. The approach adopted is based on the concept of functionally-graded concrete, where part of the concrete, which surrounds the main longitudinal reinforcement in a RC (reinforced concrete) member, is strategically replaced with UHTCC with excellent crack-controlling ability. Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC has been carried out, including theo- retical analysis, experimental research on long composite beams without web reinforcement, validation and comparison between experimental and theoretical results, and analysis on crack control. In addition to improving bearing capacity, the results indicate that functionally-graded composite beams using UHTCC has been found to be very effective in preventing corrosion-induced damage compared with RC beams. Therefore, durability and service life of the structure could be enhanced. This paper discusses the development of internal force and crack propagation during loading process, and presents analysis of the internal force in different stages, moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index. In the end, the theoretical formulae have been validated by experimental results. Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial tensile loading with prominent tensile strain capacity in excess of 3%, with merely 60 μm average crack width even corresponding to the ultimate tensile strain state. The approach adopted is based on the concept of functionally-graded concrete, where part of the concrete, which surrounds the main longitudinal reinforcement in a RC (reinforced concrete) member, is strategically replaced with UHTCC with excellent crack-controlling ability. Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC has been carried out, including theoretical analysis, experimental research on long composite beams without web reinforcement, validation and comparison between experimental and theoretical results, and analysis on crack control. In addition to improving bearing capacity, the results indicate that functionally-graded composite beams using UHTCC has been found to be very effective in preventing corrosion-induced damage compared with RC beams. Therefore, durability and service life of the structure could be enhanced. This paper discusses the development of internal force and crack propagation during loading process, and presents analysis of the internal force in different stages, moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index. In the end, the theoretical formulae have been validated by experimental results.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第2期363-378,共16页 中国科学(技术科学英文版)
基金 Supported by the Key Program of the National Natural Science Foundation of China (Grant No.50438010) the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China (Grant No.JGZXJJ2006-13)
关键词 UHTCC (ultrahigh TOUGHNESS cementitious composites) crack control functionally GRADED BENDING behavior theoretical analysis UHTCC (ultrahigh toughness cementitious composites) crack control functionally graded bending behavior theoretical analysis
  • 相关文献

参考文献5

二级参考文献51

共引文献368

同被引文献51

引证文献17

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部