摘要
为准确识别棉花异性纤维中较难识别的羽毛和麻绳异性纤维,采用机器视觉技术,通过图像处理方法采集异性纤维目标,对羽毛和麻绳异性纤维的色彩和纹理特征进行有效的特征提取,形成异性纤维目标的特征向量。再通过一种自底向上的凝聚型层次聚类算法对提取的羽毛和麻绳的色彩与纹理特征进行层次聚类分析,选择最优特征向量。将8个特征向量进行降维分析并比较各维数下的层次聚类效果,试验结果表明,选取红色(R_ave)、绿色(G_ave)、蓝色(B_ave)、能量、熵、惯性矩等6个特征进行层次聚类效果最好,羽毛识别率达到94%,麻绳识别率达到95%,说明选择的特征向量对这2种异性纤维具有理想的区分性。该研究可为棉花异性纤维的正确识别提供参考。
为准确识别棉花异性纤维中较难识别的羽毛和麻绳异性纤维,采用机器视觉技术,通过图像处理方法采集异性纤维目标,对羽毛和麻绳异性纤维的色彩和纹理特征进行有效的特征提取,形成异性纤维目标的特征向量。再通过一种自底向上的凝聚型层次聚类算法对提取的羽毛和麻绳的色彩与纹理特征进行层次聚类分析,选择最优特征向量。将8个特征向量进行降维分析并比较各维数下的层次聚类效果,试验结果表明,选取红色(R_ave)、绿色(G_ave)、蓝色(B_ave)、能量、熵、惯性矩等6个特征进行层次聚类效果最好,羽毛识别率达到94%,麻绳识别率达到95%,说明选择的特征向量对这2种异性纤维具有理想的区分性。该研究可为棉花异性纤维的正确识别提供参考。
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2012年第S2期202-207,共6页
Transactions of the Chinese Society of Agricultural Engineering
基金
Science and Technology Planning Project of Shandong Province,China(NO.2012GNC11202)
关键词
机器视觉
特征提取
棉花
异性纤维
层次聚类
computer vision
feature extraction
cotton
foreign fibers
hierarchical clustering