期刊文献+

基于SVM核函数评价的高光谱遥感影像核分类方法比较研究 被引量:2

下载PDF
导出
摘要 通过交叉验证获得不同核函数参数,并对线性、多项式、RBF、Sigmiod核函数分别用于支持向量机分类的性能进行评价,选择出最优核函数。基于上述最优核函数选择,将SVM与核Fisher判别分析和核主成分分析两种核分类方法进行比较研究。试验结果表明,SVM具有较高的分类精度和可靠性,上述研究能够为实际应用提供相关的参考。
出处 《测绘通报》 CSCD 北大核心 2012年第S1期356-358,共3页 Bulletin of Surveying and Mapping
  • 相关文献

参考文献6

  • 1谭琨,杜培军,王小美.基于支持向量机和多变量分析的高光谱遥感数据分类[J].测绘通报,2009(11):37-40. 被引量:6
  • 2杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. 被引量:34
  • 3S Mika,B Scholkopf,AJ Smola,et al.Kernel PCA and de-noising in feature spaces[].Advances in Neural Information Processing Systems.1999
  • 4DUNDAR M M,LANDGREBE A.A cost-effective semisupervisedclassifier approach with kernels[].IEEE Trans on GeoscienceRemote Sensing.2004
  • 5Scholkopf,B,Smola,A. Learning with kernels—support vector machines, regularization, optimization and beyond . 2001
  • 6GUALTIERI J A,CROMP R F.Support Vector Ma-chines for Hyperspectral Remote Sensing Classification[].Proceedings of the SPIEth AIPR Workshop.1998

二级参考文献33

  • 1VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2ROLI F,FUMERA G.Support Vector Machines for Remote-Sensing Image Classification[EB/OL].http://citeseer.nj.nec.com,2004-09-12.
  • 3PAL M,MATHER P M.Support Vector Classifiers for Land Cover Classification[M].[s.l.]:[s.n.],2003.
  • 4HUANG Han-pang,LIU Yi-hung.Fuzzy Support Vector Machines for Pattern Recognition and Data Mining[J].International Journal of Fuzzy Systems,2002,4(3):826-835.
  • 5HUANG C,DAVIS L S,TOWNSHEND R G.An Assessment of Support Vector Machines for Land Cover Classification[J].International Journal of Remote Sensing,2002,23,725-749.
  • 6HERMES L,FRIEAU D,PUZICHA J,et al.Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J].Proc.IGARSS'99,1999,1:348-350.
  • 7FARAG A A,MOHAMED R M.Classification of Multispectral Data Using Support Vector Machines Approach for Density Estimation[A].IEEE 7th International Conference on Intelligent Engineering Systems 2003[C].[s.l.]:[s.n.],2003.
  • 8KANEVSKI M,POZDNUKHOV A,CANU S,et al.Advanced Spatial Data Analysis and Modeling with Support Vector Machines[J].International Journal of Fuzzy Systems,2002,14(1):606-615.
  • 9GUALTIERI J A,CROMP R F.Support Vector Machines for Hyperspectral Remote Sensing Classification[A].Proceedings of the SPIE,27th AIPR Workshop[C].[s.l.]:[s.n.],1998.
  • 10ZHANG J,ZHANG Y,ZHOU T.Classification of Hyperspectral Data Using Support Vector Machine[A].IEEE International Conference on Image Processing[C].[s.l.]:[s.n.],2001.

共引文献37

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部