摘要
Horseradish peroxidase (HRP) and glucose oxidase (GOD) bienzyme biosensor was constructed by in-situ formation of the organic-inorganic biocomposite film based on the one-step electrodeposition and covalent-coupled sol-gel process. The electrodeposition was performed in the solution containing functional inorganic precursor possessing the epoxy groups,γ-glycidoxypropyltrimethoxysiloxane (GPTMS),a biopolymer chitosan (CS),HRP and GOD. The covalent-coupled sol-gel process was formed by self-hydrolysis and self-condensation of GPTMS,followed by in-situ covalent cross-linking of CS,HRP and GOD through covalent reaction between amino groups and epoxy groups. The developed bienzyme biosensor presented high stability in acidic solution owing to the covalent-coupled organic-inorganic hybridization. Compared with the non-hybrid HRP-GOD/CS/Au electrode,the bienzyme biosensor of HRP-GOD/GPTMS/CS/Au showed improved sensitivity and a wider linear range for the determination of glucose. The linear response of the developed HRP-GOD/GPTMS/ CS/Au biosensor for the determination of glucose ranged from 1 to 351 μmol/L with a detection limit of 0.3 μmol/L.
Horseradish peroxidase (HRP) and glucose oxidase (GOD) bienzyme biosensor was constructed by in-situ formation of the organic-inorganic biocomposite film based on the one-step electrodeposition and covalent-coupled sol-gel process. The electrodeposition was performed in the solution containing functional inorganic precursor possessing the epoxy groups, γ-glycidoxypropyltrimethoxysiloxane (GPTMS), a biopolymer chitosan (CS), HRP and GOD. The covalent-coupled sol-gel process was formed by self-hydrolysis and self-condensation of GPTMS, followed by in-situ covalent cross-linking of CS, HRP and GOD through covalent reaction between amino groups and epoxy groups. The developed bienzyme biosensor presented high stability in acidic solution owing to the covalent-coupled organic-inorganic hybridization. Compared with the non-hybrid HRP-GOD/CS/Au electrode, the bienzyme biosensor of HRP-GOD/GPTMS/CS/Au showed improved sensitivity and a wider linear range for the determination of glucose. The linear response of the developed HRP-GOD/GPTMS/CS/Au biosensor for the determination of glucose ranged from 1 to 351 μmol/L with a detection limit of 0.3 μmol/L.
基金
Supported by the National Natural Science Foundation of China (Grant Nos. 20775039 & 20775038)