摘要
This work dealt with the recovery and stabilization of the sludge with heavy metals (Cu and Ni) produced from etching and electroplating plants. The heavy metals in the sludge were deprived of by acid leaching, followed by precipitation with 28% NH4OH, and finally by electrolysis. In the electrolysis, the recovery percentage and purity were investigated at different electronic currency and temperature. The metal-deprived sludge was stabilized by mixing with glass powder and clay, followed by sintering at high temperature. How the ratio of glass powder to metal-deprived sludge affected final products (sludge bricks) was explored, in terms of specific gravity, absorption capacity, unconfined compressive strength, morphology, the volume shrinkage ratio and burn-up ratio. The volume shrinkage ratio and burn-up ratio of sludge bricks increased with metal-deprived sludge contents. The heavy metal remaining in sludge bricks was assessed through TCLP (toxicity characteristic leaching procedure) and by the analysis of SEM and EDX. The results from TCLP showed that the contents of leached metals were all below the regulatory criteria. This fact approved the feasibility of our method.
This work dealt with the recovery and stabilization of the sludge with heavy metals (Cu and Ni) produced from etching and electroplating plants. The heavy metals in the sludge were deprived of by acid leaching, followed by precipitation with 28% NH4OH, and finally by electrolysis. In the electrolysis, the recovery percentage and purity were investigated at different electronic currency and temperature. The metal-deprived sludge was stabilized by mixing with glass powder and clay, followed by sintering at high temperature. How the ratio of glass powder to metal-deprived sludge affected final products (sludge bricks) was explored, in terms of specific gravity, absorption capacity, unconfined compressive strength, morphology, the volume shrinkage ratio and burn-up ratio. The volume shrinkage ratio and burn-up ratio of sludge bricks increased with metal-deprived sludge contents. The heavy metal remaining in sludge bricks was assessed through TCLP (toxicity characteristic leaching procedure) and by the analysis of SEM and EDX. The results from TCLP showed that the contents of leached metals were all below the regulatory criteria. This fact approved the feasibility of our method.