期刊文献+

Spectral response of rice(Oryza sativa L.) leaves to Fe^(2+) stress 被引量:1

Spectral response of rice(Oryza sativa L.) leaves to Fe^(2+) stress
原文传递
导出
摘要 In the management of lake eutrophication,the regulation effect of Fe is considered,in addition to the controlling nitrogen-and phosphorus input.Based on the "Fe hypothesis",this paper tentatively applied plant spectral response to the remote sensing early-warning mechanism of lake eutrophication.A laboratory water culture experiment with rice(Oryza sativa L.) was conducted to study Fe uptake by plants and the chlorophyll concentration and visible-near infrared spectrum of vegetable leaves as well as their interrelations under Fe2+ stress.Three spectral indices,i.e.,A1(integral value of the changes of spectral reflectivity in the range 460―670 nm under Fe2+ stress),A2(integral value of the changes of spectral reflectivity in the range of 760―1000 nm under Fe2+ stress) and S(blue-shift range of red edge curve under Fe2+ stress),were used to establish quantitative models about the relationships between the rice leaf spectrum and Fe2+ stress.With the increase of Fe2+ in a culture solution,the Fe content in rice plants increased,while the chlorophyll concentration in vegetative leaves decreased.The spectral reflectivity of vegetable leaves increased in the visible light band but decreased in the near infrared band,and the blue-shift range of the red edge curve increased.The indices A1,A2 and S all had significant correlations with the Fe content in rice leaves,the correlation coefficient being respectively 0.951(P < 0.01),?0.988(P < 0.01) and 0.851(P < 0.01),and simulated(multiple correlation coefficients R2 > 0.96) and predict the Fe level in rice leaves. In the management of lake eutrophication,the regulation effect of Fe is considered,in addition to the controlling nitrogen-and phosphorus input.Based on the "Fe hypothesis",this paper tentatively applied plant spectral response to the remote sensing early-warning mechanism of lake eutrophication.A laboratory water culture experiment with rice(Oryza sativa L.) was conducted to study Fe uptake by plants and the chlorophyll concentration and visible-near infrared spectrum of vegetable leaves as well as their interrelations under Fe2+ stress.Three spectral indices,i.e.,A1(integral value of the changes of spectral reflectivity in the range 460―670 nm under Fe2+ stress),A2(integral value of the changes of spectral reflectivity in the range of 760―1000 nm under Fe2+ stress) and S(blue-shift range of red edge curve under Fe2+ stress),were used to establish quantitative models about the relationships between the rice leaf spectrum and Fe2+ stress.With the increase of Fe2+ in a culture solution,the Fe content in rice plants increased,while the chlorophyll concentration in vegetative leaves decreased.The spectral reflectivity of vegetable leaves increased in the visible light band but decreased in the near infrared band,and the blue-shift range of the red edge curve increased.The indices A1,A2 and S all had significant correlations with the Fe content in rice leaves,the correlation coefficient being respectively 0.951(P < 0.01),?0.988(P < 0.01) and 0.851(P < 0.01),and simulated(multiple correlation coefficients R2 > 0.96) and predict the Fe level in rice leaves.
出处 《Science China(Life Sciences)》 SCIE CAS 2009年第8期747-753,共7页 中国科学(生命科学英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 40801133)
关键词 rice(Oryza SATIVA L.) spectrum Fe2+ lake EUTROPHICATION rice(Oryza sativa L.),spectrum,Fe2+,lake eutrophication
  • 相关文献

参考文献6

二级参考文献81

共引文献198

同被引文献6

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部