期刊文献+

Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt 被引量:61

Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt
原文传递
导出
摘要 The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt. Despite the different ages for their emplacement, the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE, but also by high initial Sr isotope ratios, low εNd(t) values and low radiogeneic Pb isotope compositions. Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages. Most of the Cretaceous mafic rocks have zircon δ18O values and whole-rock δ13C values lower than those for the normal mantle. A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite, respectively. This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block. Their precursors underwent the UHP metamorphism and the post-collisional anatexis, respectively at different times and depths. Therefore, the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen; the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension. The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermediate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt. Despite the different ages for their emplacement, the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE, but also by high initial Sr isotope ratios, low ? Nd(t) values and low radiogeneic Pb isotope compositions. Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages. Most of the Cretaceous mafic rocks have zircon δ 18O values and whole-rock δ 13C values lower than those for the normal mantle. A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite, respectively. This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block. Their precursors underwent the UHP metamorphism and the post-collisional anatexis, respectively at different times and depths. Therefore, the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen; the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension.
出处 《Science China Earth Sciences》 SCIE EI CAS 2009年第9期1295-1318,共24页 中国科学(地球科学英文版)
基金 Supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-131) the Chinese Ministry of Science and Technology (Grant No. 2009CB825004) National Natural Science Foundation of China (Grant No. 40673009)
关键词 continental subduction LITHOSPHERE ANATEXIS POST-COLLISIONAL magmatism MESOZOIC tectonics UHP metamorphic rocks DABIE-SULU continental subduction lithosphere anatexis post-collisional magmatism Mesozoic tectonics UHP metamorphic rocks Dabie-Sulu
  • 相关文献

参考文献38

二级参考文献384

共引文献1577

同被引文献1198

引证文献61

二级引证文献761

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部