摘要
The mono-protonated and di-protonated forms of copper phthalocyanine (CuPc) were obtained by increasing concentrations of trifluoroacetic acid (TFA) solution to a fixed concentration of CuPc solutions. UV-Vis spectrum shows that the Q bands of these two derivatives split and shift to the red, which means successive protonation happened and caused the two derivatives to lose their symmetry. After the protonation step, the solubility of protonated CuPc in organic solvent increased 60 times. The CuPc film was fabricated by the electrophoretic deposition (EPD) method from the protonated CuPc dissolved in nitromethane containing TFA. Scanning electron microscopy (SEM) showed that the deposited CuPc film on the indium tin oxide (ITO) substrate is composed of thread-like nanobelts with diameters between 100 nm and 200 nm. Furthermore, the CuPc film is in α phase with stacking direction (b-axis) parallel to the substrate, which was detected by X-ray diffraction.
The mono-protonated and di-protonated forms of copper phthalocyanine (CuPc) were obtained by increasing concentrations of trifluoroacetic acid (TFA) solution to a fixed concentration of CuPc solutions. UV-Vis spectrum shows that the Q bands of these two derivatives split and shift to the red, which means successive protonation happened and caused the two derivatives to lose their symmetry. After the protonation step, the solubility of protonated CuPc in organic solvent increased 60 times. The CuPc film was fabricated by the electrophoretic deposition (EPD) method from the protonated CuPc dissolved in nitromethane containing TFA. Scanning electron microscopy (SEM) showed that the deposited CuPc film on the indium tin oxide (ITO) substrate is composed of thread-like nanobelts with diameters between 100 nm and 200 nm. Furthermore, the CuPc film is in α phase with stacking direction (b-axis) parallel to the substrate, which was detected by X-ray diffraction.