摘要
Statistical inference on parametric part for the partially linear single-index model (PLSIM) is considered in this paper. A profile least-squares technique for estimating the parametric part is proposed and the asymptotic normality of the profile least-squares estimator is given. Based on the estimator, a generalized likelihood ratio (GLR) test is proposed to test whether parameters on linear part for the model is under a contain linear restricted condition. Under the null model, the proposed GLR statistic follows asymptotically the χ2-distribution with the scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Both simulated and real data examples are used to illustrate our proposed methods.
Statistical inference on parametric part for the partially linear single-index model (PLSIM) is considered in this paper. A profile least-squares technique for estimating the parametric part is proposed and the asymptotic normality of the profile least-squares estimator is given. Based on the estimator, a generalized likelihood ratio (GLR) test is proposed to test whether parameters on linear part for the model is under a contain linear restricted condition. Under the null model, the proposed GLR statistic follows asymptotically the χ2-distribution with the scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Both simulated and real data examples are used to illustrate our proposed methods.
基金
supported by National Natural Science Foundation of China (Grant No. 10871072)
Natural Science Foundation of Shanxi Province of China (Grant No. 2007011014)
PhD Program Scholarship Fund of ECNU 2009