期刊文献+

Bergman kernel and complex singularity exponent

Bergman kernel and complex singularity exponent
原文传递
导出
摘要 We give a precise estimate of the Bergman kernel for the model domain defined by Ω F = “(z,w) ∈ ? n+1: Im w ? |F(z)|2 > 0”, where F = (f 1, ..., f m ) is a holomorphic map from ? n to ? m , in terms of the complex singularity exponent of F. We give a precise estimate of the Bergman kernel for the model domain defined by Ω F={(z,w) ∈ C n+1:Im w |F (z)| 2 > 0},where F=(f 1,...,f m) is a holomorphic map from C n to C m,in terms of the complex singularity exponent of F.
作者 LEE HanJin
出处 《Science China Mathematics》 SCIE 2009年第12期2590-2603,共14页 中国科学:数学(英文版)
基金 supported by the New Century Excellent Talent Project (Grant No. NECT-05-0380) the Chinese Excellent Doctorate’s Degree Thesis (Grant No. 200519)Fok Ying Tung Education Fundation National Natural Science Foundation of China (Grant No. 10871145)
关键词 Bergman kernel complex singularity exponent model domain 32A25 Bergman kernel complex singularity exponent model domain
  • 相关文献

参考文献21

  • 1Bo-Yong Chen,Joe Kamimoto,Takeo Ohsawa.Behavior of the Bergman kernel at infinity[J]. Mathematische Zeitschrift . 2004 (4)
  • 2Joe Kamimoto.Newton polyhedra and the Bergman kernel[J]. Mathematische Zeitschrift . 2004 (3)
  • 3David W. Catlin.Estimates of invariant metrics on pseudoconvex domains of dimension two[J]. Mathematische Zeitschrift . 1989 (3)
  • 4Takeo Ohsawa,Kensho Takegoshi.On the extension ofL 2 holomorphic functions[J]. Mathematische Zeitschrift . 1987 (2)
  • 5Klas Diederich,Gregor Herbort,Takeo Ohsawa.The Bergman kernel on uniformly extendable pseudoconvex domains[J]. Mathematische Annalen . 1986 (3)
  • 6Gregor Herbort.Logarithmic growth of the Bergman Kernel for weakly pseudoconvex domains in ?3 of finite type[J]. Manuscripta Mathematica . 1983 (1)
  • 7Peter Pflug.Quadratintegrable holomorphe Funktionen und die Serre-Vermutung[J]. Mathematische Annalen . 1975 (3)
  • 8Charles Fefferman.The Bergman kernel and biholomorphic mappings of pseudoconvex domains[J]. Inventiones Mathematicae . 1974 (1)
  • 9Klas Diederich.über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten[J]. Mathematische Annalen . 1973 (2)
  • 10Klas Diederich.Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten[J]. Mathematische Annalen . 1970 (1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部