期刊文献+

Laplacians on the holomorphic tangent bundle of a Kaehler manifold 被引量:3

Laplacians on the holomorphic tangent bundle of a Kaehler manifold
原文传递
导出
摘要 Let M be a connected complex manifold endowed with a Hermitian metric g.In this paper,the complex horizontal and vertical Laplacians associated with the induced Hermitian metric <·,·>on the holomorphic tangent bundle T 1,0M of M are defined,and their explicit expressions are obtained.Using the complex horizontal and vertical Laplacians associated with the Hermitian metric <·,·>on T 1,0M,we obtain a vanishing theorem of holomorphic horizontal p forms which are compactly supported in T 1,0M under the condition that g is a Kaehler metric on M. Let M be a connected complex manifold endowed with a Hermitian metric g. In this paper, the complex horizontal and vertical Laplacians associated with the induced Hermitian metric 〈·, ·〉 on the holomorphic tangent bundle T 1,0 M of M are defined, and their explicit expressions are obtained. Using the complex horizontal and vertical Laplacians associated with the Hermitian metric 〈·, ·〉 on T 1,0 M, we obtain a vanishing theorem of holomorphic horizontal p forms which are compactly supported in T 1,0 M under the condition that g is a Kaehler metric on M.
出处 《Science China Mathematics》 SCIE 2009年第12期2841-2854,共14页 中国科学:数学(英文版)
基金 supported by the Program for New Century Excellent Talents in Fujian Province and National Natural Science Foundation of China(Grant Nos.10601040,10971170)
关键词 Kaehler manifold complex horizontal Laplacian vanishing theorem 32Q15 32L20 Kaehler manifold complex horizontal Laplacian vanishing theorem
  • 相关文献

参考文献16

  • 1Morrow J,Kodaira K.Complex Manifolds. . 1971
  • 2Zhong C.A vanishing theorem on Kaehler Finsler manifolds. DiffGeom Appl . 2009
  • 3Pitis G,Munteanu G.v-Cohomology of complex Finsler manifolds. Studia Univ Babes-Bolyai Mathematica . 1998
  • 4Bochner S.Vector fields and Ricci curvature. Bulletin of the American Mathematical Society . 1946
  • 5Sasaki,S.On the differential geometry of tangent bundles of Riemannian manifolds. T?hoku Math. J., II. Ser . 1958
  • 6Cao,J.-K.,Wong,P.-M.Finsler geometry of projectivized vector bundles. J. Math. Kyoto Uni . 2003
  • 7Abate, M.,Patrizio, G.Finsler Metrics—A Global Approach, with Applications to Geometric Function Theory. Lecture Notes in Mathematics . 1994
  • 8Aikou,T.Finsler geometry on complex vector bundles. Riemann-Finlser geometry MSRI Publications . 2004
  • 9Wong,P. M.A survey of complex Finsler geometry. Adv. Stud. in Pure Math . 2007
  • 10Kobayashi,S.Negative vector bundles and complex Finsler structures. Nagoya Mathematical Journal . 1975

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部