期刊文献+

Anti-commutative Grbner-Shirshov basis of a free Lie algebra 被引量:1

Anti-commutative Grbner-Shirshov basis of a free Lie algebra
原文传递
导出
摘要 The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct construction, that is, first he started with a linear space spanned by Hall words, then defined the Lie product of Hall words and finally checked that the product yields the Lie identities. In this paper, we give a Grbner-Shirshov basis for a free Lie algebra. As an application, by using the Composition-Diamond lemma established by Shirshov in 1962 for free anti-commutative (non-associative) algebras, we provide another method different from that of M. Hall to construct a basis of a free Lie algebra. The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct construction, that is, first he started with a linear space spanned by Hall words, then defined the Lie product of Hall words and finally checked that the product yields the Lie identities. In this paper, we give a Grbner-Shirshov basis for a free Lie algebra. As an application, by using the Composition-Diamond lemma established by Shirshov in 1962 for free anti-commutative (non-associative) algebras, we provide another method different from that of M. Hall to construct a basis of a free Lie algebra.
作者 BOKUT L. A.
出处 《Science China Mathematics》 SCIE 2009年第2期244-253,共10页 中国科学:数学(英文版)
基金 supported by the grant LSS (Grant No. 344.2008.1) the SB RAS Integration Grant (GrantNo. 2006.1.9) (Russia) National Natural Science Foundation of China (Grant No. 10771077) Natural Science Foundation of Guangdong Province (Grant No. 06025062)
关键词 LIE ALGEBRA anti-commutative ALGEBRA HALL words Grbner-Shirshov BASIS Lie algebra, anti-commutative algebra, Hall words, Grbner-Shirshov basis
  • 相关文献

参考文献19

  • 1B. Buchberger.Ein algorithmisches Kriterium für die L?sbarkeit eines algebraischen Gleichungssystems[J]. Aequationes Mathematicae . 1970 (3)
  • 2Gruenberg K W.Private communication. .
  • 3Shirshov A I.Bases for free Lie algebras. Algebra Logic . 1962
  • 4Reutenauer C.Free Lie Algebras. . 1993
  • 5Bokut L A.Bases of free poly-nilpotent Lie algebras. Algebra Logic . 1963
  • 6Zhukov A I.Complete systems of defining relations in noassociative algebras. Matematicheskii Sbornik . 1950
  • 7Hall,M.A basis for free Lie rings and higher commutators in free groups. Proceedings of the American Mathematical Society . 1950
  • 8Hall,P.A contribution to the theory of groups of prime power order. Proc. London Math. Soc (2) . 1933
  • 9Magnus W.Uber beziehungen zwischen hoheren kommutatoren. Journal fur die Reine und Angewandte Mathematik . 1937
  • 10Witt,E.Treue Darstellung Lieschen Ringe. Journal fur die Reine und Angewandte Mathematik . 1937

同被引文献60

  • 1Shirshov A I. Some algorithmic problem for ε-algebras [J]. Sibirskii Matematichskii Zhurnal, 1962,3:132 - 137.
  • 2Bokut L A,Latyshev V, Shestakov I,et al. Selected works of A. I. Shirshov[ M ]. Trs: Bremner M, Kotchetov M V. Basel,Boston, Berlin : Birkhauser ,2009.
  • 3Shirshov A I. Some algorithmic problem for Lie algebras [ J]. Sibirskii Matematichskii Zhurnal, 1962,3 ( 2 ) : 292 - 296.
  • 4Bergman G M. The diamond lemma for ring theory [ J ]. Advances in Mathematics, 1978,29 : 178 - 218.
  • 5Bokut L A. Imbeddings into simple associative algebras [ J]. Algebra Logika, 1976,15 : 117 - 142.
  • 6Bokut L A, Chen Y Q. Grobner-Shirshov bases for Lie algebras: After A.I. Shirshov[ J]. Southeast Asian Bul- letin of Mathematics ,2007,31:1057 - 1076.
  • 7Hironaka H. Resolution of singularities of an algebraic va- riety over a field if characteristic zero: Ⅰ , Ⅱ [ J ]. Math- ematische Annalen, 1964,79 : 109 - 203 ;205 - 326.
  • 8Buchberger B. An algorithmical criteria for the solvability of algebraic systems of equations [ J]. Aequationes Math- ematicae, 1970,4:374 - 383.
  • 9Bokut L A, Chen Y Q. Grobner-Shirshov bases: Some new results [ C ]//Shum K P, Zelmanov E, Zhang J P, et al. Advance in Algebra and Combinatorics. Singapore: World Scientific, 2008:35 - 56.
  • 10Bokut L A, Chen Y Q. Grobner-Shirshov bases and their calculation [ J ]. Bulletin of Mathematical Sciences, doi: 10. 1007/s13373 - 014 - 0054 - 6.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部