期刊文献+

On finite 2-groups all of whose subgroups are mutually isomorphic

On finite 2-groups all of whose subgroups are mutually isomorphic
原文传递
导出
摘要 In this paper we investigate the title groups which we call isomaximal. We give the list of all isomaximal 2-groups with abelian maximal subgroups. Further, we prove some properties of isomaximal 2-groups with nonabelian maximal subgroups. After that, we investigate the structure of isomaximal groups of order less than 64. Finally, in Theorem 14. we show that the minimal nonmetacyclic group of order 32 possesses a unique isomaximal extension of order 64. In this paper we investigate the title groups which we call isomaximal. We give the list of all isomaximal 2-groups with abelian maximal subgroups. Further, we prove some properties of isomaximal 2-groups with nonabelian maximal subgroups. After that, we investigate the structure of isomaximal groups of order less than 64. Finally, in Theorem 14. we show that the minimal nonmetacyclic group of order 32 possesses a unique isomaximal extension of order 64.
出处 《Science China Mathematics》 SCIE 2009年第2期254-260,共7页 中国科学:数学(英文版)
基金 supported by Ministry of Science, Education and Sports of Republic of Croatia (Grant No.036-0000000-3223)
关键词 P-GROUPS maximal subgroups minimal nonabelian minimal nonmetacyclic 20D15 p-groups maximal subgroups minimal nonabelian minimal nonmetacyclic
  • 相关文献

参考文献2

  • 1Janko Z.Finite 2-groups with exactly four cyclic subgroups of order 2n[].Journal fur die Reine und Angewandte Mathematik.2004
  • 2epuli V,Ivankovi M,Kova Striko E.Second-metacyclic finite 2-groups[].Glasnik Mat.2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部