期刊文献+

The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polynomials

The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polynomials
原文传递
导出
摘要 Canonical bases of the tensor powers of the natural $ U_q (\mathfrak{g}\mathfrak{l}_{m|n} ) $ -module V are constructed by adapting the work of Frenkel, Khovanov and Kirrilov to the quantum supergroup setting. This result is generalized in several directions. We first construct the canonical bases of the ?2-graded symmetric algebra of V and tensor powers of this superalgebra; then construct canonical bases for the superalgebra O q (M m|n ) of a quantum (m,n) × (m,n)-supermatrix; and finally deduce from the latter result the canonical basis of every irreducible tensor module for $ U_q (\mathfrak{g}\mathfrak{l}_{m|n} ) $ by applying a quantum analogue of the Borel-Weil construction. Canonical bases of the tensor powers of the natural Uq(glm|n)-module V are constructed by adapting the work of Frenkel, Khovanov and Kirrilov to the quantum supergroup setting. This result is generalized in several directions. We first construct the canonical bases of the Z2-graded symmetric algebra of V and tensor powers of this superalgebra; then construct canonical bases for the superalgebra Oq(Mm|n) of a quantum (m, n) × (m, n)-supermatrix; and finally deduce from the latter result the canonical basis of every irreducible tensor module for Uq(glm|n) by applying a quantum analogue of the Borel-Weil construction.
出处 《Science China Mathematics》 SCIE 2009年第3期401-416,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10471070)
关键词 canonical basis crystal basis Kazhdan-Lusztig polynomial 17B37 81R50 canonical basis crystal basis Kazhdan-Lusztig polynomial
  • 相关文献

参考文献19

  • 1Hechun Zhang,R. B. Zhang.Dual Canonical Bases for the Quantum Special Linear Group and Invariant Subalgebras[J]. Letters in Mathematical Physics . 2005 (3)
  • 2I. B. Frenkel,M. G. Khovanov,A. A. Kirillov.Kazhdan-Lusztig polynomials and canonical basis[J]. Transformation Groups . 1998 (4)
  • 3R. B. Zhang.Structure and Representations of the Quantum General Linear Supergroup[J]. Communications in Mathematical Physics . 1998 (3)
  • 4S. M. Khoroshkin,V. N. Tolstoy.UniversalR-matrix for quantized (super)algebras[J]. Communications in Mathematical Physics . 1991 (3)
  • 5David Kazhdan,George Lusztig.Representations of Coxeter groups and Hecke algebras[J]. Inventiones Mathematicae . 1979 (2)
  • 6Zhang R B.Structure and representations of the quantum general linear supergroup. Communications in Mathematical Physics . 1998
  • 7Benkart G,Kang S J,Kashiwara M.Crystal bases for the quantum superalgebra Uq(gl(m n)). Journal of the American Mathematical Society . 2000
  • 8Frenkel I B,Khovanov M,Kirrilov A A.Kazhdan-Lusztig polynomials and canonical basis. Transform Groups . 1998
  • 9Brundan J.Dual canonical bases and Kazhdan-Lusztig polynomials. Journal of Algebra . 2006
  • 10Zhang R B.Finite-dimensional irreducible representations of the quantum supergroup Uq(gl(m|n)). Journal of Mathematical Physics . 1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部