期刊文献+

Compact DG modules and Gorenstein DG algebras 被引量:10

Compact DG modules and Gorenstein DG algebras
原文传递
导出
摘要 When the base connected cochain DG algebra is cohomologically bounded, it is proved that the difference between the amplitude of a compact DG module and that of the DG algebra is just the projective dimension of that module. This yields the unboundedness of the cohomology of non-trivial regular DG algebras.When A is a regular DG algebra such that H(A) is a Koszul graded algebra, H(A) is proved to have the finite global dimension. And we give an example to illustrate that the global dimension of H(A) may be infinite, if the condition that H(A) is Koszul is weakened to the condition that A is a Koszul DG algebra. For a general regular DG algebra A, we give some equivalent conditions for the Gorensteiness.For a finite connected DG algebra A, we prove that Dc(A) and Dc(A op) admit Auslander-Reiten triangles if and only if A and A op are Gorenstein DG algebras. When A is a non-trivial regular DG algebra such that H(A) is locally finite, Dc(A) does not admit Auslander-Reiten triangles. We turn to study the existence of Auslander-Reiten triangles in D lf b (A) and D lf b (A op) instead, when A is a regular DG algebra. When the base connected cochain DG algebra is cohomologically bounded, it is proved that the difference between the amplitude of a compact DG module and that of the DG algebra is just the projective dimension of that module. This yields the unboundedness of the cohomology of non-trivial regular DG algebras. When A is a regular DG algebra such that H(A) is a Koszul graded algebra, H(A) is proved to have the finite global dimension. And we give an example to illustrate that the global dimension of H(A) may be infinite, if the condition that H(A) is Koszul is weakened to the condition that A is a Koszul DG algebra. For a general regular DG algebra A, we give some equivalent conditions for the Gorensteiness. For a finite connected DG algebra A, we prove that Dc(A) and Dc(Aop) admit Auslander-Reiten triangles if and only if A and Aop are Gorenstein DG algebras. When A is a non-trivial regular DG algebra such that H(A) is locally finite, Dc(A) does not admit Auslander-Reiten triangles. We turn to study the existence of Auslander-Reiten triangles in Dlbf(A) and Dlbf(Aop) instead, when A is a regular DG algebra.
出处 《Science China Mathematics》 SCIE 2009年第4期648-676,共29页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 10731070) the Doctorate Foundation of Ministry of Education of China (Grant No. 20060246003)
关键词 differential graded algebra Gorenstein DG algebra regular DG algebra Koszul DG algebra compact DG module Auslander-Reiten triangles amplitude projective dimension 16E10 16E45 16G70 differential graded algebra Gorenstein DG algebra regular DG algebra Koszul DG algebra compact DG module Auslander-Reiten triangles amplitude projective dimension
  • 相关文献

参考文献26

  • 1Peter J?rgensen.Auslander-Reiten theory over topological spaces[J]. Commentarii Mathematici Helvetici . 2004 (1)
  • 2Anders Frankild,Peter J?rgensen.Gorenstein differential graded algebras[J]. Israel Journal of Mathematics . 2003 (1)
  • 3Henning Krause.Auslander–Reiten Theory via Brown Representability Dedicated to Professor Daniel Quillen on his Sixtieth Birthday[J]. K - Theory . 2000 (4)
  • 4Dieter Happel.On the derived category of a finite-dimensional algebra[J]. Commentarii Mathematici Helvetici . 1987 (1)
  • 5Jrgensen P.Amplitude inequalities for differential graded modules. .
  • 6Frankild A J,Jrgensen P.Homological properties of cochain differential graded algebras. Journal of Algebra . 2008
  • 7Yekutieli A,Zhang J J.Rigid complexes via DG algebras. Transactions of the American Mathematical Society . 2008
  • 8B. Iversen.Amplitude inequalities for complexes. Annales Scientifiques de l Ecole Normale Superieure . 1977
  • 9Quillen,Daniel.Rational homotopy theory. Annals of Mathematics . 1969
  • 10He J W,Wu Q S.Koszul differential graded algebras and BGG correspondence. Journal of Algebra . 2008

同被引文献24

  • 1SU Yucai & XU XiaopingDepartment of Mathematics, Shanghai Jiaotong University, Shanghai 200030, China,Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China.Central simple Poisson algebras[J].Science China Mathematics,2004,47(2):245-263. 被引量:5
  • 2HE JiWei,WU QuanShui.Koszul differential graded modules[J].Science China Mathematics,2009,52(9):2027-2035. 被引量:3
  • 3R. Bezrukavnikov.Koszul DG-algebras arising from configuration spaces[J]. Geometric and Functional Analysis . 1994 (2)
  • 4Keller B.Deriving DG categories. Ann Sci cole Norm Sup . 1994
  • 5J-rgensen P.Linear free resolution over non-commutative graded algebras. Compositio Mathematica . 2004
  • 6Avramov L L,Buchweitz R O,Iyengar S B, et al.Homology of perfect complexes. Advances in Mathematics . 2010
  • 7D. Shklyarov.On serre duality for compact homologically smooth DG algebras. .
  • 8Mao X F,Wu Q S.Homological invariants for connected DG algebras. Communications in Algebra . 2008
  • 9Artin,M.,Shelter,W.Graded algebras of global dimension 3. Advances in Mathematics . 1987
  • 10Avramov,L. L,Foxby,H. B,Halperin,S.Di eretial Graded Homological Algebra. .

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部