摘要
When the base connected cochain DG algebra is cohomologically bounded, it is proved that the difference between the amplitude of a compact DG module and that of the DG algebra is just the projective dimension of that module. This yields the unboundedness of the cohomology of non-trivial regular DG algebras.When A is a regular DG algebra such that H(A) is a Koszul graded algebra, H(A) is proved to have the finite global dimension. And we give an example to illustrate that the global dimension of H(A) may be infinite, if the condition that H(A) is Koszul is weakened to the condition that A is a Koszul DG algebra. For a general regular DG algebra A, we give some equivalent conditions for the Gorensteiness.For a finite connected DG algebra A, we prove that Dc(A) and Dc(A op) admit Auslander-Reiten triangles if and only if A and A op are Gorenstein DG algebras. When A is a non-trivial regular DG algebra such that H(A) is locally finite, Dc(A) does not admit Auslander-Reiten triangles. We turn to study the existence of Auslander-Reiten triangles in D lf b (A) and D lf b (A op) instead, when A is a regular DG algebra.
When the base connected cochain DG algebra is cohomologically bounded, it is proved that the difference between the amplitude of a compact DG module and that of the DG algebra is just the projective dimension of that module. This yields the unboundedness of the cohomology of non-trivial regular DG algebras. When A is a regular DG algebra such that H(A) is a Koszul graded algebra, H(A) is proved to have the finite global dimension. And we give an example to illustrate that the global dimension of H(A) may be infinite, if the condition that H(A) is Koszul is weakened to the condition that A is a Koszul DG algebra. For a general regular DG algebra A, we give some equivalent conditions for the Gorensteiness. For a finite connected DG algebra A, we prove that Dc(A) and Dc(Aop) admit Auslander-Reiten triangles if and only if A and Aop are Gorenstein DG algebras. When A is a non-trivial regular DG algebra such that H(A) is locally finite, Dc(A) does not admit Auslander-Reiten triangles. We turn to study the existence of Auslander-Reiten triangles in Dlbf(A) and Dlbf(Aop) instead, when A is a regular DG algebra.
基金
supported by the National Natural Science Foundation of China (Grant No. 10731070)
the Doctorate Foundation of Ministry of Education of China (Grant No. 20060246003)