期刊文献+

Proof of the Branner-Hubbard conjecture on Cantor Julia sets 被引量:8

Proof of the Branner-Hubbard conjecture on Cantor Julia sets
原文传递
导出
摘要 By means of a nested sequence of some critical pieces constructed by Kozlovski, Shen, and van Strien, and by using a covering lemma recently proved by Kahn and Lyubich, we prove that a component of the filled-in Julia set of any polynomial is a point if and only if its forward orbit contains no periodic critical components. It follows immediately that the Julia set of a polynomial is a Cantor set if and only if each critical component of the filled-in Julia set is aperiodic. This result was a conjecture raised by Branner and Hubbard in 1992. By means of a nested sequence of some critical pieces constructed by Kozlovski, Shen, and van Strien, and by using a covering lemma recently proved by Kahn and Lyubich, we prove that a component of the filled-in Julia set of any polynomial is a point if and only if its forward orbit contains no periodic critical components. It follows immediately that the Julia set of a polynomial is a Cantor set if and only if each critical component of the filled-in Julia set is aperiodic. This result was a conjecture raised by Branner and Hubbard in 1992.
出处 《Science China Mathematics》 SCIE 2009年第1期45-65,共21页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China
关键词 Julia set Branner-Hubbard conjecture PUZZLE TABLEAU 37F10 37F20 Julia set Branner-Hubbard conjecture puzzle tableau
  • 相关文献

参考文献2

二级参考文献2

共引文献3

同被引文献20

  • 1尹永成.The topology of Julia sets for polynomials[J].Science China Mathematics,2002,45(8):1020-1024. 被引量:2
  • 2ZHAI Yu Department of Mathematics, Zhejiang University, Hangzhou 310027, China.Rigidity for rational maps with Cantor Julia sets[J].Science China Mathematics,2008,51(1):79-92. 被引量:4
  • 3YIN YONGCHENG.THE TOPOLOGY OF JULIA SETS FOR GEOMETRICALLY FINITE POLYNOMIALS[J].Chinese Annals of Mathematics,Series B,1998,19(1):77-80. 被引量:1
  • 4Jacek Graczyk,Stanislav Smirnov.Non-uniform hyperbolicity in complex dynamics[J]. Inventiones mathematicae . 2009 (2)
  • 5Henk Bruin,Juan Rivera-Letelier,Weixiao Shen,Sebastian van Strien.Large derivatives, backward contraction and invariant densities for interval maps[J]. Inventiones mathematicae . 2008 (3)
  • 6Henk Bruin,Weixiao Shen,Sebastian van Strien.Invariant Measures Exist Without a Growth Condition[J]. Communications in Mathematical Physics . 2003 (2-3)
  • 7G. Levin,F. Przytycki.External rays to periodic points[J]. Israel Journal of Mathematics . 1996 (1)
  • 8Tomasz Nowicki,Sebastian Strien.Invariant measures exist under a summability condition for unimodal maps[J]. Inventiones Mathematicae . 1991 (1)
  • 9Levin G,Przytycki F.External rays to periodic points. Israel Journal of Mathematics . 1995
  • 10Collet,P.,Eckmann,J.-P.Positive Liapunov exponents and absolute continuity for maps of the interval. Ergodic Theory and Dynamical Systems . 1983

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部