期刊文献+

Representations of deformed preprojective algebras and quantum groups

Representations of deformed preprojective algebras and quantum groups
原文传递
导出
摘要 Let (Г, I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group ? d . In this paper, we list all indecomposable representations of (θ, I) and give the conditions that those representations of them can be extended to representations of deformed preprojective algebra Пλ(Г, I). It is shown that those representations given by extending indecomposable representations of (Г, I) are all simple representations of Пλ(Г, I). Therefore, it is concluded that all simple representations of restricted quantum group ū q (sl 2) are realized in terms of deformed preprojective algebra. Let (Γ,I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group Zd. In this paper, we list all indecomposable representations of (Γ,I) and give the conditions that those representations of them can be extended to representations of deformed preprojective algebra Πλ(Γ,I). It is shown that those representations given by extending indecomposable representations of (Γ,I) are all simple representations of Πλ(Γ,I). Therefore, it is concluded that all simple representa-tions of restricted quantum group Uq(sl2) are realized in terms of deformed preprojective algebra.
出处 《Science China Mathematics》 SCIE 2009年第1期109-118,共10页 中国科学:数学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 10671016, 10771014) the Beijing Natural Science Foundation (Grant No. 1062003) Science and Technology Program of Beijing Education Committee (Grant No. KM200710005013)
关键词 preprojective algebra quantum group indecomposable representation 16G20 17B35 preprojective algebra quantum group indecomposable representation
  • 相关文献

参考文献12

  • 1Hua-Lin Huang,Shilin Yang.Quantum Groups and Double Quiver Algebras[J]. Letters in Mathematical Physics . 2005 (1)
  • 2William Crawley-Boevey.Geometry of the Moment Map for Representations of Quivers[J]. Compositio Mathematica . 2001 (3)
  • 3E.L. Green,?. Solberg.Basic Hopf algebras and quantum groups[J]. Mathematische Zeitschrift . 1998 (1)
  • 4Claude Cibils.A quiver quantum group[J]. Communications in Mathematical Physics . 1993 (3)
  • 5Assem I,Simson D,Skowronski A.Elements of Representation Theory of Associative Algebras. . 2006
  • 6Kassel C.Quantum Groups. GTM . 1995
  • 7Green,E.,Solberg.Basic Hopf algebras and quantum groups. Mathematische Zeitschrift . 1998
  • 8Cibils,C.A quiver quantum group. Communications in Mathematical Physics . 1993
  • 9Crawley-Boevey,W.,Holland,M. P.Noncommutative deformations of Kleinian singularities. Duke Mathematical Journal . 1998
  • 10Shilin Yang.Quantum groups and deformations of preprojective algebras. Journal of Algebra . 2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部