摘要
Based on the joint-observations of the radio broadband spectral emissions of the solar eclipse on August 1, 2008 at Jiuquan (total eclipse) and Huairou (partial eclipse) at the frequencies of 2.00-5.60 GHz (Jiuquan), 2.60-3.80 GHz (Chinese solar broadband radiospectrometer, SBRS/Huairou), and 5.20-7.60 GHz (SBRS/Huairou), the authors assemble a successive series of broadband spectra with a frequency of 2.60-7.60 GHz to observe the solar eclipse synchronously. This is the first attempt to analyze the solar eclipse radio emission under the two telescopes located at different places with broadband frequencies in the periods of total and partial eclipses. With these analyses, the authors made a semiempirical model of the coronal plasma density of the quiet Sun, which can be expressed as ne 1.42×109(r-2+1.93r-5) (cm-3), in the space range of r=1.039-1.212 R , and made a comparison with the classic model.
Based on the joint-observations of the radio broadband spectral emissions of the solar eclipse on August 1, 2008 at Jiuquan (total eclipse) and Huairou (partial eclipse) at the frequencies of 2.00–5.60 GHz (Jiuquan), 2.60–3.80 GHZ (Chinese solar broadband radiospectrometer, SBRS/Huairou), and 5.20–7.60 GHz (SBRS/Huairou), the authors assemble a successive series of broadband spectra with a frequency of 2.60–7.60 GHz to observe the solar eclipse synchronously. This is the first attempt to analyze the solar eclipse radio emission under the two telescopes located at different places with broadband frequencies in the periods of total and partial eclipses. With these analyses, the authorsmade a semiempirical model of the coronal plasma density of the quiet Sun, which can be expressed as n e ? 1.42×109(r ?2+1.93r ?5) (cm?3), in the space range of r=1.039–1.212 R ⊙, and made a comparison with the classic model.
基金
Supported by the CAS-NSFC Key Project (Grant No. 10778605)
the National Natural Science Foundation of China (Grant Nos. 10733020,10843002, and 10873021)
the MOST (Grant No. 2006CB806301)