期刊文献+

引入统计先验的人脸图像恢复 被引量:1

Introducing Statistical Prior Knowledge to Face Image Restoration
下载PDF
导出
摘要 将人脸形状和纹理的统计先验作为约束 ,引入经典正则化图像恢复算法框架 ,并给出迭代求解算法 ;同时 ,定义了反映图像模糊程度的边缘活动度 ,并在迭代的每一步中计算图像的边缘活动度 ,以确定在迭代求解过程中人脸先验对解进行约束的程度 由于人脸统计先验的约束以及引入边缘活动度来指导迭代求解过程 ,避免了由经典恢复算法得到的结果中会出现的振铃波纹 对实验结果的分析和主观感受表明 The statistical prior knowledge for the shape and texture of a face is formulated as a constraint energy term, which is incorporated into the regularized framework for image restoration. An iterative algorithm is given to provide a numerical solution. Besides, an edge active measure (EAM)is defined to describe the blurring nature of an image, which is evaluated at each step of the iteration process to determine the weight of statistical prior constraint. The unfavorable ringing effects are avoided due to the incorporated statistical prior and guidance of the evaluated EAMs. Subjective and objective comparisons of restoration results verified the effectiveness of proposed approach for image preservation and noise suppression.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第4期497-502,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 人脸图像恢复 正则化方法 人脸统计先验 边缘活动度 抗噪能力 恢复质量 人脸形状 人脸纹理 face image restoration regularized approach statistical face prior knowledge
  • 相关文献

参考文献8

  • 1Zhao W Y, Chellappa R. Image Based Face Recognition, Issues and Methods[M]. In: Javidi B, ed. Image Recognition and Classification. New York: Mercel Dekker, 2002. 375~402
  • 2Baker S, Kanade T. Limits on super-resolution and how to break them[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 29(9): 1167~1183
  • 3Cootes T F, Edwards G J, Taylor C J. Active appearance models[A]. In: Proceedings of the 5th European Conference on Computer Vision, Freiburg, 1998. 484~498
  • 4Langendijk R L, Biemond J, Boekee D E. Regularized iterative image restoration with ringing reduction[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(12): 1874~1888
  • 5Wong H S, Guan L. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture[J]. IEEE Transactions on Neural Networks, 2001, 12(3): 516~531
  • 6Field D J, Brady N. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes[J]. Vision Research, 1997, 37(23): 3367~3383
  • 7Ramos M G, Hemami S S, Tamburro M A. Psychovisually-based multiresolution image segmentation[A]. In: Proceedings of IEEE International Conference on Image Processing, Santa Barbara, 1997. 66~70
  • 8Stegmann M B, Fisker R, Ersboll B K. Extending and applying active appearance models for automated, high precision segmentation in different image modalities[A]. In: Proceedings of the 12th Scandinavian Conference on Image Analysis, Bergen, 2001. 90~97

同被引文献7

  • 1王新年,梁德群.基于傅立叶和小波域的多通道图像恢复方法[J].计算机工程与设计,2005,26(11):3078-3081. 被引量:2
  • 2You Y L,Kaveh M.Blind image restoration by anisotropic regularization[J].IEEE Transactions on Image Processing,1999,8(3):396-407.
  • 3Idier J.Convex half-quadratic criteria and interacting auxiliary variables for image restoration[J].IEEE Transactions on Image Processing,2001,10(7):1001-1009.
  • 4Wu X J,Wang R S,Wang C.Regularized image restoration based on adaptively selecting parameter and operator[C].UK:17thIEEE International Conference on Pattern Recognition,2004.662-665.
  • 5Perry S W,Guan L.Weight assignment for adaptive image restoration by neural networks[J].IEEE Transactions on Neural Networks,2000,11 (1):156-170.
  • 6Malgouyres F.Minimizing the total variation under a general convex constraint for image restoration[J].IEEE Transactions on Image Processing,2002,11(12):1450-1456.
  • 7廖业宏,林学訚.基于特征脸空间的人脸图像恢复[J].电子学报,2004,32(5):709-712. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部