期刊文献+

基于遗传算法的多边形逼近3D数字曲线 被引量:9

Polygonal Approximation of 3D Digitized Curves Using Genetic Algorithms
下载PDF
导出
摘要 首先对 3D数字曲线进行简单的数据压缩 通过对该曲线上的点列进行二进制编码定义来表示数字曲线的染色体 二进制串中的每一个位称为基因 ,每一个逼近多边形和染色体形成 1 1映射 目标函数使给定曲线和逼近多边形之间的均方差最小 构造了解决该问题的选择、交叉、变异三个算子 所得最优染色体中基因值为 1的基因对应数字曲线的分界点 实验结果表明 。 A simple data reduction is first applied to the digitized curve. Chromosomes are defined by encoding the point sequence into binary strings to represent the digitized curve. Each bit of binary strings is called a gene. Each polygonal approximation is mapped to a unique binary string. The objection function is defined as the mean square errors between the given digitized curve and the approximated polygonal. Three genetic operators, namely selection, crossover and mutation, are constructed to solve the problem. Points of 3D digitized curve corresponding to genes of a chromosome, equal to 1 s, are demarcation ones. Experimental results show that this approach can get more accurate result of approximation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第4期503-507,T007,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金 ( 60 2 710 3 2 ) 陕西省教育厅专项基金 ( 0 3Jk15 5 )资助
关键词 多边形逼近 遗传算法 染色体 均方差 基因 3D数字曲线 物体轮廓线 图像处理 模式识别 计算机视觉 polygonal approximation genetic algorithms chromosome mean square error
  • 相关文献

参考文献17

  • 1Sklansky J, Chazin R L, Hansen B J. Minimum perimeter polygonal of digitized silhouettes[J]. IEEE Transactions on Computers, 1972, 21(3): 260~268
  • 2Sklansky J, Gonzalez V. Fast polygonal approximation of digitized curves[J]. Pattern Recognition, 1980, 12(5): 327~331
  • 3Pavlidis T. Polygonal approximation by Newton's method[J]. IEEE Transactions on Computers, 1977, 26(8): 801~807
  • 4Willimas C M. An efficient algorithm for the piecewise linear planar curves and lines[J]. Computer Graphics Image Process, 1981, 16(4): 370~381
  • 5Roberge J. A data reduction algorithm for planar curves[J]. Computer Graphics Image Process, 1985, 32(2): 168~195
  • 6Wall K, Danielsson P E. A fast sequential method for polygonal approximation of digitized curves[J]. Computer Graphics Image Process, 1984, 28(2): 220~227
  • 7Dunham J G. Optimum uniform piecewise linear approximation of planner curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 67~75
  • 8Ray B K, Ray K S. Determination of optimal polygon from digital curves using L1 norm[J]. Pattern Recognition, 1993, 26(4): 505~509
  • 9Chung P C, Tsai C T, Chen E L, et al. Polygonal approximation using a competitive Hopfield neural network[J]. Pattern Recognition, 1994, 27(11): 1505~1512
  • 10Mitzias D A, Mertzios B G. Shape recognition with a neural classifier based on a fast polygonal approximation technique[J]. Pattern Recognition, 1994, 27(5): 627~636

二级参考文献6

共引文献13

同被引文献94

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部