摘要
在圆型限制性三体问题模型下,实现地月转移的必要条件是探测器的初始速度使其对应的Jacobi常数C小于平动点L1对应的临界值C1。地月转移轨道一般采用霍曼转移轨道,也可以利用平动点L1的不稳定性实现节能过渡,前者需要较大的变轨速度从而消耗较多能量,而后者则会消耗过长的时间。通过理论分析和数值验证表明,若在月球探测器的发射过程中合理利用光压力的助推作用,则探测器不必消耗太多能量和太长时间即可到达月球,这是一种可供参考的用于发射月球探测器(包括同时执行地月空间环境探测任务)的轨道转移方式。
In the dynamical model of a circular restricted three-body problem,the necessary conditions to achieve the transfer of a lunar probe is that the Jacobi constant C should be less than C1,corresponding to the probe and the Lagrange Equilibrium points L1 respectively.A Hohmann transfer orbit is often used to guide a probe to the moon,and we can also use the instability of L1 point to achieve energy-saving transition,but the former needs larger power consumption while the latter will consume long time.Based on theoretical analysis and numerical calculations,this paper shows that a lunar probe does not have to consume too much energy and a very long time to reach the moon if reasonable use of light pressure is made in the process of launch.This kind of transfer could be referenced in launch of a lunar probe(as well as exploration of the land-moon space environment).
出处
《飞行器测控学报》
2009年第4期76-79,共4页
Journal of Spacecraft TT&C Technology
基金
国家自然科学基金资助课题(No.10673006)
关键词
月球探测器
轨道转移
光压
Lunar Probe
Transfer Orbit
Light Pressure