摘要
Recent fission experiment data provide interesting structure information for neutron-rich nuclei in the mass A ~ 160 region. We apply the projected shell model to study the strongly-deformed, neutron-rich Sm isotopes. We perform calculations for rotational bands up to spin I = 20 (29/2) for even-even (odd-neutron) Sm isotopes, and analyze the band structure of low-lying states with quasiparticle excitations. Emphasis is given to rotational bands based on one-quasiparticle (1-qp) configurations in the odd-mass 159Sm. The 159 Sm result is discussed together with those of the even-even isotopes 158,160Sm. New bands in 159Sm based on neutron 1-qp 1/2 and 5/2+ configurations are predicted. Electromagnetic transition probabilities are discussed.
Recent fission experiment data provide interesting structure information for neutron-rich nuclei in the mass A ~ 160 region. We apply the projected shell model to study the strongly-deformed, neutron-rich Sm isotopes. We perform calculations for rotational bands up to spin I = 20 (29/2) for even-even (odd-neutron) Sm isotopes, and analyze the band structure of low-lying states with quasiparticle excitations. Emphasis is given to rotational bands based on one-quasiparticle (1-qp) configurations in the odd-mass 159Sm. The 159 Sm result is discussed together with those of the even-even isotopes 158,160Sm. New bands in 159Sm based on neutron 1-qp 1/2 and 5/2+ configurations are predicted. Electromagnetic transition probabilities are discussed.
作者
YANG YingChun1 & SUN Yang1,2,3 1 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
基金
supported by the Shanghai Pu-Jiang Grant, the National Natural Science Foundation of China (Grant Nos. 10875077 and 11075103)
the Doctoral Program of High Education Science Foundation (Grant No.20090073110061)
the Chinese Major State Basic Research Development Program (Grant No. 2007CB815005)