期刊文献+

认知无线电中协作能量概率分布频谱感知方法 被引量:1

Energy Probability Distribution of Cooperative Spectrum Sensing in Cognitive Radios
原文传递
导出
摘要 提出了一种基于能量概率分布(EPD)的协作频谱感知算法,以提高认知无线电的检测性能.与传统能量检测使用能量均值做为检测统计量不同,EPD感知算法中的协作感知次用户统计大于给定门限值的采样信号个数,并传送给数据融合中心,数据融合中心将所有统计结果进行叠加,并与噪声的能量概率密度进行相关运算来获得判决结果.利用高斯近似理论分析所提出的EPD协作频谱感知算法的检测性能.仿真结果表明,协作用户数越多,新提出算法的检测性能比传统协作频谱感知硬判决算法越有优势,同时又不需要任何主用户的先验信息. 提出了一种基于能量概率分布(EPD)的协作频谱感知算法,以提高认知无线电的检测性能.与传统能量检测使用能量均值做为检测统计量不同,EPD感知算法中的协作感知次用户统计大于给定门限值的采样信号个数,并传送给数据融合中心,数据融合中心将所有统计结果进行叠加,并与噪声的能量概率密度进行相关运算来获得判决结果.利用高斯近似理论分析所提出的EPD协作频谱感知算法的检测性能.仿真结果表明,协作用户数越多,新提出算法的检测性能比传统协作频谱感知硬判决算法越有优势,同时又不需要任何主用户的先验信息.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第S1期19-22,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划项目(2009AA011805 2009AA011302) 国家自然科学基金项目(61071075 60830001 61032002)
关键词 认知无线电 频谱感知 能量概率分布 协作 cognitive radio spectrum sensing energy probability distribution cooperation
  • 相关文献

参考文献7

  • 1刘航,于丹,孔祥维.低信噪比条件下提高认知无线电的频谱感知能力的方法[J].电子与信息学报,2009,31(4):993-996. 被引量:9
  • 2Ghasemi A,Sousa E S.Spectrum sensing in cognitiveradio networks:requirements,challenges and designtrade-offs. Communications MagazineIEEE . 2008
  • 3Wang Beibei,Liu K J.Advances in cognitive radio net-works:a survey. Selected Topics in Signal Process-ing . 2011
  • 4Digham F,Alouini M,Simon M.On the energy detectionof unknown signals over fading channels. IEEETransactions on Communications . 2007
  • 5Sutton P,Lotze J,Nolan K,et al.Cyclostationary signa-ture detection in multipath Rayleigh fading environments. CrownCom 2007 . 2007
  • 6Ghasemi A,Sousa E.Collaborative spectrum sensing foropportunistic access in fading environments. DyS-PAN 2005 . 2005
  • 7Ma Jun,,Zhao Guodong,Li Ye.Soft combination anddetection for cooperative spectrum sensing in cognitive ra-dio networks. IEEE Transactions on Wireless Com-munications . 2008

二级参考文献9

  • 1Mitola Ⅲ J. Cognitive radio: An integrated agent architecture for software defined radio. [Ph.D. dissertation], KTH Royal Institute of Technology Stockholm, Sweden,2000.
  • 2Gardner W A and Spooner C M. Cyclic spectral analysis for signal detection and modulation recognition. MILCOM'88, San Diego, CA, 1988: 419-424.
  • 3Gardner W A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process Magazine, 1991, 8(2): 14-36.
  • 4Kim K, Akbar I A, Bae K K, Um J S, Spooner C M, and Reed J H. Cyclostationary approaches to signal detection and classification in cognitive radio. IEEE DySPAN, Dublin, Ireland, 2007: 212-215.
  • 5Fehske A and Gaeddert J A. A new approach to signal classification using spectral correlation and neural networks. IEEE DySPAN, Baltimore, Maryland, USA, 2005: 144-150.
  • 6He Tao and Zhou Zheng-ou. Modulation classification based on multifractal features. 6th International Conference on ITS Telecommunications Proceedings, Chengdu, China, 2006: 152-155.
  • 7Wu Dan, Gu Xuemai, and Guo Qing. A New Scheme of Automatic Modulation Classification Using Wavelet and WSVM. 2nd International Conference on Mobile Technology, Applications and Systems, Guangzhou, China, 2005, 5pp.
  • 8Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995: 85-90.
  • 9Wu T F, Lin C J, and Weng R C. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 2004, 5(8): 975-1005.

共引文献8

同被引文献14

  • 1Haykin S. Cognitive radio:Brain empowered wireless comunications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Akyildiz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: A sur- vey[J]. Physical Communication, 2011, 4 (1) .. 40- 62.
  • 3Liang Y C, Chen K C, Li G Y, et al. Cognitive radio networking and communications: An overview [J ]. IEEE Transactions on Vehicular Technology, 2011, 60(7) : 3386-3407.
  • 4Lunden J, Kassam S A, Koivunen V. Robust non- parametric cyclic correlation-based spectrum sensing for cognitive radio[J]. IEEE Transactions on Signal Processing, 2010, 58(5) 38-52.
  • 5Tandra R, Sahai A. SNR walls for signal detection [J]. IEEE Journal of Selected Topics in Signal Pro- cessing, 2008, 2(1): 4-17.
  • 6Wald A. Sequential analysis[M]. New York: Dover Publication, 2004: 1-224.
  • 7Hesham L, Sultan A, Nafie M, et al. Distributed spectrum sensing with sequential ordered transmis- sion to a cognitive fusion center[J]. IEEE Transac- tion on Signal Processing, 2012, 60(5).. 2524-2538.
  • 8Zou Q, Zheng S, Sayed A H. Cooperative sensing via sequential detection[J]. IEEE Transaction on Signal Processing, 2010, 58(12): 6266-6283.
  • 9Duan D, Yang L, Principe J C. Cooperative diversity of spectrum sensing for cognitiw radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58 (6) : 3218-3227.
  • 10Duan D, Yang L. Cooperative spectrum sensing with ternary local decisions [J]. IEEE Communications Letters, 2012, 16(9): 1512-1515.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部