期刊文献+

大围长及线性编码复杂度的LDPC码构造

Construction of LDPC Code with Big Girth and Linear-encoding Complexity
下载PDF
导出
摘要 基于环搜索算法和PEG算法,提出一种构造具有大围长及线性编码复杂度的准循环低密度奇偶校验码(LDPC)方法。通过将校验矩阵设计成近似下三角结构,实现线性复杂度的迭代编码,利用PEG算法构造基矩阵,并使用环搜索算法优化环的分布,在此基础上给出一种快速编码方法。仿真结果表明,使用该方法构造的LDPC码性能优于Tanner-QC码,与随机码性能相当,且无错误平台。 基于环搜索算法和PEG算法,提出一种构造具有大围长及线性编码复杂度的准循环低密度奇偶校验码(LDPC)方法。通过将校验矩阵设计成近似下三角结构,实现线性复杂度的迭代编码,利用PEG算法构造基矩阵,并使用环搜索算法优化环的分布,在此基础上给出一种快速编码方法。仿真结果表明,使用该方法构造的LDPC码性能优于Tanner-QC码,与随机码性能相当,且无错误平台。
出处 《计算机工程》 CAS CSCD 北大核心 2011年第S1期382-384,387,共4页 Computer Engineering
关键词 低密度奇偶校验码 大围长 线性编码 环搜索算法 PEG算法 Low-density Parity Check(LDPC) code big girth linear-encoding cycle search algorithm Progressive Edge Growth(PEG) algorithm
  • 相关文献

参考文献9

  • 1周水红,端木春江,黄志亮,陈形.高性能准循环LDPC码构造方法的改进[J].计算机工程,2010,36(1):277-279. 被引量:5
  • 2刘星成,程浩辉.基于PEG算法的准循环LDPC码构造方法研究[J].电路与系统学报,2009,14(4):115-119. 被引量:10
  • 3乔华,管武,董明科,项海格.一种基于循环移位矩阵的LDPC码构造方法[J].电子与信息学报,2008,30(10):2384-2387. 被引量:7
  • 4Zhao Y,Xiao Y.The Necessary and Sufficient Condition of a Class of Quasi-cyclic LDPC Codes Without Girth Four. IEICE Transactions on Communications . 2009
  • 5X Y Hu,E Eleftheriou,D M Arnold.Regular and irregular Progressive Edge-Growth Tanner Graphs. IEEE Transactions on Information Theory . 2005
  • 6Richardson T J,Urbanke R L.Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory . 2001
  • 7DIVSALAR D,DOLINAR S,JONES C.Short protograph-based LDPC codes. Proc.MILCOM2007 . 2007
  • 8Chilappagari S K,Nguyen D V,Vasic B,et al.Error correction capability of column-weight-three LDPC codes under the Gallager A Al-gorithm-part II. IEEE Transactions on Information Theory . 2010
  • 9Fossorier M P C.Quasi-Cyclic Low-Density Parity-Check Codes from Circulant Permutation Matrices. IEEE Transactions on Information Theory . 2004

二级参考文献29

  • 1R G Gallager. Low-Density Parity-Check Codes [J]. IRE Trans. Inform. Theory, 1962, 8(1): 21-28.
  • 2D J C MacKay, R M Neak Near Shannon Limit Performance of Low Density Parity Check Codes [J]. Electronics Letters, 1996, 32(18): 1645.
  • 3T J Richardson, M A Shokrollahi, R L Urbanke. Design of Capacityapproaching Irregular Low-Density Parity-Check Codes [J]. IEEE Trans. Inform. Theory, 2001, 47(2): 619-637.
  • 4D J C Mackay. Good Error-correcting Codes Based on Very Sparse Matrices [J]. IEEE Trans. Inform. Theory, 1999, 45(2): 399-432.
  • 5Z W Li, L Chen, L Q Zeng, S Lin, W H Fong. Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes [J]. IEEE Trans. Comm., 2006, 54(1): 71-81.
  • 6S Lin, L Chen, J Xu, I Djurdjevic. Near Shannon Limit Quasi-Cyclic Low-Density Parity-Check Codes [A]. IEEE Global Telecomm. Conf. [C]. 2003-12, 4: 2030-2035.
  • 7Y Kou, S Lin, M Fossorier. Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Result [J]. IEEE Trans. Inform. Theory, 2001, 47(7): 2711-2736.
  • 8B Ammar, B Honary, Y Kou, Construction of Low-Density Parity-Check Codes Based on Balanced Incomplete Block Designs [J]. IEEE Trans. Inform. Theory, 2004, 50(6): 1257-1269.
  • 9X Y Hu, E Eleftheriou, D M Arnold. Progressive Edge-Growth Tanner Graphs [A]. IEEE GLOBECOM [C]. San Antonio, TX, USA, 2001, 2: 995-1001.
  • 10X Y Hu, E Eleftheriou, D M Arnold. Regular and Irregular Progressive Edge-Growth Tanner Graphs [J]. IEEE Trans. Inform. Theory, 2002, 51(1): 386-398.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部