期刊文献+

带位移偶次方项非线性随机振子在位移参数激励下的概率解

THE PROBABILISTIC SOLUTION OF NONLINEAR STOCHASTIC OSCILLATOR WITH EVEN ORDER TERMS AND PARAMETRIC EXCITATION IN DISPLACEMENT
原文传递
导出
摘要 论文用指数多项式闭合或EPC(Exponential Polynomial Closure)法分析了具非零均值响应的带位移偶次方项非线性随机振子在参数激励下响应的概率密度函数解.给出了求解过程并通过算例分析验证了指数多项式闭合法在此情况下的有效性.数值结果显示,指数多项式闭合法得到的响应概率密度结果与蒙特卡洛模拟的结果符合较好,尤其是在对系统可靠性分析起主要作用的概率密度函数尾部区域符合很好. 论文用指数多项式闭合或EPC(Exponential Polynomial Closure)法分析了具非零均值响应的带位移偶次方项非线性随机振子在参数激励下响应的概率密度函数解.给出了求解过程并通过算例分析验证了指数多项式闭合法在此情况下的有效性.数值结果显示,指数多项式闭合法得到的响应概率密度结果与蒙特卡洛模拟的结果符合较好,尤其是在对系统可靠性分析起主要作用的概率密度函数尾部区域符合很好.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第S1期265-268,共4页 Chinese Journal of Solid Mechanics
关键词 指数多项式闭合(EPC)法 FOKKER-PLANCK方程 非零均值 位移偶次方非线性 参数激励 exponential-polynomial closure(EPC) method Fokker-Planck equation non-zero mean responses even order terms in displacement parametric excitation
  • 相关文献

参考文献21

  • 1Booton R C.Nonlinear control systems with randominputs. IRE Trans.Circuit Theory . 1954
  • 2Assaf S A,Zirkie L D.Approximate analysis of non-linear stochastic systems. International Journal of Control . 1976
  • 3Cai G Q,,Lin Y K.A new approximation solutiontechnique for randomly excited non-linear oscillators. Int.J.Non-Linear Mech . 1988
  • 4Sobczyk K,Trebicki J.Maximum entropy principle instochastic dynamics. Probab.Eng.Mech . 1990
  • 5Er G K.A new non-Gaussian closure method for thePDF solution of non-linear random vibrations. Pro-ceedings of 12th Engineering Mechanics Conference . 1998
  • 6Er G K.Exponential closure method for some ran-domly excited non-linear systems. Int.J.Non-line-ar Mech . 2000
  • 7Er G K,Iu V P.A new method for the probabilisticsolutions of large-scale nonlinear stochastic dynamicsystems. Proceedings of the IUTAM Symposium onNonlinear Stochastic Dynamics and Control . 2011
  • 8Kloeden P E,Platen E.Numerical Solution of Sto-chastic Differential Equations. . 1995
  • 9Stratonovich,R.L. Topics in the Theory of Random Noise . 1963
  • 10Roberts J B,Spanos P D.Stochastic averaging: an approximate method of solving random vibration problems. International Journal of Non - linear Mechanics . 1986

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部