摘要
The transformation of nonmetallic inclusions and the change of MnS precipitation ratio on oxide particles during heat treatment were studied by using Fe-10%Cr alloy containing different Si and S content in the present study. The phenomenon of oxide transformation in alloy in this research was characterized according to Si content. When the Si content was lower, the typical inclusions changed from MnO?SiO2 type to MnO?Cr2O3 type by heat treatment. In the case of high S concentration, the obvious MnS area in inclusions was observed after heat treatment. It was more favorable for MnS precipitation as the S content was improved from approximately 20×10-6 to 60×10-6. The MnS precipitation ratio on oxide particles was higher on MnO?SiO2 type than MnO-Cr2O3 type oxide particles. Besides, the ratio on the two kinds of oxides increased with increasing the time for heat treatment at 1473K as a whole. The theoretical Mn content at which MnS can precipitate agrees well with the experimental results.
The transformation of nonmetallic inclusions and the change of MnS precipitation ratio on oxide particles during heat treatment were studied by using Fe-10%Cr alloy containing different Si and S content in the present study. The phenomenon of oxide transformation in alloy in this research was characterized according to Si content. When the Si content was lower, the typical inclusions changed from MnO?SiO2 type to MnO?Cr2O3 type by heat treatment. In the case of high S concentration, the obvious MnS area in inclusions was observed after heat treatment. It was more favorable for MnS precipitation as the S content was improved from approximately 20×10-6 to 60×10-6. The MnS precipitation ratio on oxide particles was higher on MnO?SiO2 type than MnO-Cr2O3 type oxide particles. Besides, the ratio on the two kinds of oxides increased with increasing the time for heat treatment at 1473K as a whole. The theoretical Mn content at which MnS can precipitate agrees well with the experimental results.
作者
WANG Mao1, WANG Xin-hua1, YU Hui-xiang1, KITAMURA Shinya2, SHIBATA Hiroyuki2 (1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan)