期刊文献+

基于复合算法的混合交通流前景提取 被引量:2

Recombination algorithm for mixed traffic flow foreground Abstracting
下载PDF
导出
摘要 根据混合流交通视频检测的特点,基于背景差分法和边缘信息提取算法各自的优点,建立了一种用于提取混合流参数的复合算法。该算法通过将利用背景差分提供的前景个数信息和利用边缘检测算法提取的前景边缘信息进行融合,得到有效的前景信息。试验结果表明,本文算法能够更为有效地获取混合流前景信息,更为准确地提供混合流交通参数。 根据混合流交通视频检测的特点,基于背景差分法和边缘信息提取算法各自的优点,建立了一种用于提取混合流参数的复合算法。该算法通过将利用背景差分提供的前景个数信息和利用边缘检测算法提取的前景边缘信息进行融合,得到有效的前景信息。试验结果表明,本文算法能够更为有效地获取混合流前景信息,更为准确地提供混合流交通参数。
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第S1期76-80,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 "863"国家高技术研究发展计划项目(2009AA11Z210) 国家自然科学基金项目(50808092) 吉林省科技发展计划项目
关键词 交通运输系统工程 混合交通流 前景提取 复合算法 信息融合 engineering of communicutions and transpotation system mixed traffic flow foreground extraction recombination algorithm information fusion
  • 相关文献

参考文献4

二级参考文献24

  • 1吴国雄,陈武凡.图像的模糊增强与聚类分割[J].小型微型计算机系统,1994,15(11):21-26. 被引量:22
  • 2汤仁彪.图象的模糊增强[J].计算机工程,1984,(3).
  • 3谢维信.工程模糊数学[M].西安:西安电子科技大学出版社,1994..
  • 4付京孙.模式识别的理论和方法[J].自动化,1980,4(1).
  • 5T.帕夫里迪思.结构模式识别[M].上海:上海科技文献出版社,1981..
  • 6[1]Horn B K, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1): 185~203
  • 7[2]Girosi F, Verri A, Torre V. Constraints for the computation of optical flow. Proceedings of the IEEE Workshop on Visual Motion, 1989. 116~124
  • 8[3]Russo P, Marandey V, Bui T,et al. Optical Flow Techniques for Moving Target Detection. SPIE Proceedings, 1990,1383: 62~71
  • 9[4]Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(10): 972~986
  • 10[5]Hong E P, Spann M. Robust optical flow computation based on least-median-of-square regression. International Journal of Computer Vision, 1999,31(1): 51~826

共引文献46

同被引文献18

  • 1杨涛,刘越,吕尤,王涌天.一种投影-摄像机交互系统中的全自动快速标定方法[J].系统仿真学报,2009,21(S1):51-53. 被引量:2
  • 2张玲,叶海炳,何伟.一种基于边缘信息的改进车辆检测方法[J].重庆大学学报(自然科学版),2004,27(11):56-58. 被引量:10
  • 3MAURIN B, MASOUD O, PAPANIKOLOPOULOS N P. Tracking all traffic: algorithms for monitoring vehicles, individuals, and crowds [ J ]. Computer Vision Robotics & Automation Magazine, IEEE, 2005, 12(1) : 29-36.
  • 4SAUNIER N, SAYED T. A feature-based tracking algorithm for vehicles in intersections[ C]//Proceedings of the 3rd Canadian Conference on Computer and Robot Vision. [ S. 1. ] : IEEE, 2006 : 59-59.
  • 5SAUNIER N, SAYED T. Probabilistic framework for automated analysis of exposure to road collisions I J]. Transportation Research Record: Journal of the Transportation Research Board, 2009 (2083) : 96-104.
  • 6ISMAIL K, SAYED T, SAUNIER N, et al. Automated analysis of pedestrian-vehicle conflicts using video data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010 ( 2140 ) : 44- 54.
  • 7SAYED T, LIM C. Probabilistic collision prediction for vision-based automated road safety analysis[C l// Intelligent Transportation Systems Conference. Seattle: [ s. n. ], 2007 : 872-878.
  • 8MAINI P. Development of a vehicle following model (VEHFOL) and a hetero generous traffic simulation model ( HETSIM ) for controlled intersections[ D]. Denver: Department of Civil Engineering, University of Colorado, 2001.
  • 9COIFMAN B, BEYMER D, MCLAUCHLAN P. A real-time computer vision system for vehicle track traffic surveillance[ J ]. Transportation Research Part C: Emerging Technologies, 1998, 6(4): 271-288.
  • 10Ma X X,Grimson W E L. Edge-based rich represen-tation for vehicle classification [C]// IEEE 10th In-ternational Conference on Computer Vision,Beijing,Germany, 2005 : 1185-1192.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部