期刊文献+

用于带边信息人脸数据的半监督维数约减算法 被引量:1

Semi-supervised dimensionality reduction algorithm applying in face data with side information
下载PDF
导出
摘要 提出了一种基于测地线距离的半监督维数约减算法,并将其用于带边信息的人脸数据的维数约减,此算法可以充分利用边信息和数据点之间的测地线距离,从而在保留边信息的同时保留更为真实的数据拓扑结构信息。在人脸数据库上的实验结果表明,本文所提出的算法对数据降维后用于分类时可取得比其他算法更高的准确率,且对创建的KNN图中的参数K最具鲁棒性。 提出了一种基于测地线距离的半监督维数约减算法,并将其用于带边信息的人脸数据的维数约减,此算法可以充分利用边信息和数据点之间的测地线距离,从而在保留边信息的同时保留更为真实的数据拓扑结构信息。在人脸数据库上的实验结果表明,本文所提出的算法对数据降维后用于分类时可取得比其他算法更高的准确率,且对创建的KNN图中的参数K最具鲁棒性。
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第S1期189-193,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60906034) 华南理工大学中央高校基本科研业务费专项基金项目(2009ZM0189)
关键词 人脸数据集 半监督维数约减 测地线距离 边信息修正 face database semi-supervised dimensionality reduction geodesic distance side-information revise
  • 相关文献

参考文献1

二级参考文献25

  • 1Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York: John Wiley & Sons, 2001.
  • 2Turk MA, Pentland AP. Face recognition using eigenfaces. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 1991. 586-591.
  • 3Martinez AM, Kak AC. PCA Versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(2):228-233.
  • 4Zhu XJ. Semi-Supervised learning literature survey. Technical Report, 1530, Department of Computer Sciences, University of Wisconsin at Madison, 2006. http://www.cs.wisc.edu/-jerryzhu/pub/ssl_survey.pdf
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior' knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002. 307-314.
  • 7Shental N, Hertz T, Weinshall D, Pavel M. Adjustment learning and relevant component analysis. In: Shental N, Hertz T, Weinshall D, Pavel M, eds. Proc. of the 7th European Conf. on Computer Vision. London: Springer-Verlag, 2002. 776-792.
  • 8Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning Research, 2005,6(6):937-965.
  • 9Xing EP, Ng AY, Jordan MI, Russell S. Distance metric learning, with application to clustering with Side-information. In: Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing Systems 15. Cambridge: MIT Press, 2003. 505-512.
  • 10Tang W, Zhong S. Pairwise constraints-guided dimensionality reduction. In: Proc. of the 2006 SlAM Int'l Conf. on Data Mining Workshop on Feature Selection for Data Mining. 2006. 59-66.

共引文献24

同被引文献16

  • 1Bennett K P, Demiriz A. Semi-supervised support vector machine[C]//NIPS, Denver, USA: IEEE, 1999:368-374.
  • 2Chapelle O, Zien A. Semi-supervised classification by low fensity deperation[C]//10th Int Workshop on AI and Stat, USA: IEEE, 2005:57-64.
  • 3Blum A, Chawla S. Learning from labeled and unla- beled data using graph mineuts [C]//ICML CA, USA: IEEE, 2001:19-26.
  • 4Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and Harmonic func- tions[C]//ICML, Washington D C, USA: IEEE, 2003: 58-65,.
  • 5Zhou D, Bousquet O, Lal T, et al. Scholkopf B learning with local and global vonsistency[C] // COLT Cambridge, MA: MIT Press, 2004: 321- 328.
  • 6Belkin M, Matveeva I, Niyogi P. Regularization and semisupervised learning on large graphs [C] /// COLT,2004 : 624-638.
  • 7Bennett K P, Demiriz A, Maclin R. Exploiting un- labeled rata in ensemble methods [C]//KDD, Edm- onton, Canada. 2002:289-296.
  • 8Chen K, Wang S. Regularized boost for semi-super- vised learning[C]//N1PS, 2008 : 281-288.
  • 9Jin R, Zhang J. Multi-class learning by smoothed boosting[J]. Math Learn,2007, 67(3): 207-227.
  • 10Scholkopf B, Smola A J. Learning with kernels: support vector machines, tion, and Beyond [P] MA, 2002.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部